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PROBLEMS AND SOLUTIONS

Edited by Daniel H. Ullman, Daniel J. Velleman,
Stan Wagon, and Douglas B. West

with the collaboration of Paul Bracken, Ezra A. Brown, Hongwei Chen, Zachary Franco,
George Gilbert, Laszl6 Liptak, Rick Luttmann, Hosam Mahmoud, Frank B. Miles, Lenhard
Ng, Rajesh Pereira, Kenneth Stolarsky, Richard Stong, Lawrence Washington, and Li Zhou.

Proposed problems, solutions, and classics should be submitted online at
americanmathematicalmonthly.submittable.com/submit.
Proposed problems must not be under consideration concurrently at any other jour-
nal, nor should they be posted to the internet before the deadline date for solutions.
Proposed solutions to the problems below must be submitted by September 30, 2024.
Proposed classics should include the problem statement, solution, and references.
More detailed instructions are available online. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

12461. Proposed by Nikolai Osipov, Siberian Federal University, Krasnoyarsk, Russia.

Find all triples (z,v, z) of positive integers such that 2% + y? = (y z - 1)3.

12462. Proposed by Tho Nguyen Xuan, Hanoi University of Science and Technology,
Hanoi, Vietnam. What is the minimum value of

1 1 1
la+b+c| + +
la=b |b—c| |c-q

over all triples a, b, ¢ of distinct real numbers satisfying a® + b* + ¢? = 2(ab + bc + ca)?

12463. Proposed by Roberto Tauraso, Tor Vergata University of Rome, Rome, Italy. For a
positive integer n, let F,, be the nth Fibonacci number (Fy =0, Fy =1, and F;, = Fj,_1 +
F,,_5 for n > 2). Show that when p is prime,

(£ () (£ )

12464. Proposed by Farhood Pouryosefi Kermani, Tehran, Iran. For a binary string X of
length n and an integer k with 1 < k < n, let (X)) denote the result of reversing the
first & elements of X and also the last n — k elements of X. For example, 72(1,0,0,1,1) =
(0,1,1,1,0). Let di (X) be the number of entries in which X and 7, (X') differ, and define
A(n) to be the maximum of miny, dy (X )/n over all choices of X.

(a) Prove A(n) <1/2.

(b) Prove that lim,,_,., A(n) exists.

(c) Find the value of lim,,_,., A(n).

is divisible by p.

doi text goes here
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12465. Proposed by Lawrence Glasser, Clarkson University, Potsdam, NY. Prove

< 1 (- DT (/4)
 cosh((4n +2)7) 29/2 73/2

12466. Proposed by Khakimboy Egamberganov, University of Edinburgh, Edinburgh, UK.
Let ABCD be a convex quadri-
lateral and let AKB, BLC,
CMD, DNA be similar right-
angled triangles constructed
externally to ABCD, where
<AKB = «¢BLC = «<CMD =
2DNA = 90° and <«KAB =
2LCB=2+MCD = «£NAD. Let
E and F bisect the diagonals AC
and BD, respectively, and let P be
the intersection of KM and LN.
Prove that « EFPF is aright angle.

12467. Proposed by Lajos Ldszlo, Eotvos Lordnd University, Budapest, Hungary. Given
any real number c, it is not hard to see that there is a unique differentiable function s :
[1,00) — R such that (1) s(n) = 1/n for all positive integers n, (2) s is quadratic or linear
on [n,n + 1] for all positive integers n, and (3) the right derivative of s at 1 is ¢. (A
function satisfying (1) and (2) is a quadratic spline.) For what values of c is s decreasing
and convex?

SOLUTIONS

A Nilpotent Commutator

12339 [2022, 686]. Proposed by Cristian Chiser, Elena Cuza College, Craiova, Romania.
Let A and B be complex n-by-n matrices for which A% + xB? =y (AB — BA), where
is a positive real number and y is a real number such that (1/7) cos™ ((y? - 2)/(y* + x))
is irrational. Prove that (AB — BA)™ is the zero matrix.

Solution by Kyle Gatesman, Fairfax, VA. Let U = A+ i\/xB and V = A - i\/x B. Note that
y =i/ # 0 because y is real and z is positive. Since

UV = A% + 2B% - i\/z(AB - BA) = (y - iv/z)(AB - BA)
and

VU = A% + 2B% +i\/z(AB - BA) = (y +iv/z)(AB - BA),
we have

. 2_ .
VU:erl,\/EUV:y x+2yz\/§UV
y—i/T Y2+

Let (y +iv/Z)/(y — i\/7) = cosf + isinf = €*. The spectrum of VU is e* times that of
UV'. By hypothesis, @ is not a rational multiple of 7, so ¢?"? # 1 for all nonzero integers 7.

It is well known for complex n-by-n matrices U and V, that UV and VU have the
same characteristic polynomial. Hence any eigenvalue of UV or V'U is an eigenvalue of the
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other. Thus the spectrum of UV is invariant under multiplication by ¢?. Since the complex
numbers e €29 3 . are distinct and the spectrum of UV has cardinality at most
n, we conclude that the only eigenvalue of UV is zero. It follows that the characteristic
polynomial of AB — BA is \". By the Cayley—Hamilton Theorem, (AB — BA)™ is the
Zero matrix.

Also solved by C. P. Anil Kumar (India), S. Bhadra, E. A. Herman, O. P. Lossers (Netherlands), M. Omarjee
(France), R. Stong, L. Zhou, and the proposer.
A Nascent Delta Function

12340 [2022, 686]. Proposed by Antonio Garcia, Strasbourg, France. Let
g:[0,1] - R be continuous. Prove that

1
lim - / _ 9@ g1)2)
0o x" n

n—eo 21 +(1-1)
for some constant C' (independent of g), and determine the value of C.

Solution by Missouri State University Problem Solving Group, Missouri State University,
Springfield, MO. Substituting u = n(2x — 1) and letting x[_,, ] denote the characteristic
function of [-n,n] gives

nflMdmzlfwg@%)m_n,n](u) .
o e (a2 e ()" (1)

Since ¢ is continuous, we may choose a K > 0 such that |g(z)| < K on [0, 1]. Further, for
n > 2, the binomial theorem gives

12 (-2 s )2) 2 5)

Therefore for n > 2,

K
T 4402

9(3+ 3) X(enany (u)

(L) +(-3)"
This upper bound has finite integral, so the dominated convergence theorem applies, and
we get

1
2

0 1. u
limﬂflﬁdlef lim g(3+2n) _ du
n—oo 2" Jo "+ (1-x)" 2 —oo'ﬂ—’°°(1+%) +(1-2)

_1 = g(/2)
STar %

o e%+eU

= %g(1/2)zau1rctzem(e“)[ooo = %9(1/2)'

Also solved by M. Aassuka (France), A. Berkane (Algeria), S. Bhadra (India), H. Chen (US), W. J. Cowieson,
M.-C. Fan (China), K. Gatesman, R. Guadalupe (Philippines), E. A. Herman, N. Hodges (UK), F. Holland
(Ireland), E. J. Ionascu, S. Kaczkowski, O. Kouba (Syria), C. Krattenthaler (Germany), G. Lavau (France),
J. H. Lindsey II, P. W. Lindstrom, O. P. Lossers (Netherlands), F. Masroor, R. Mortini (Luxembourg) & R. Rupp
(Germany), M. Omarjee (France), D. Pascuas (Spain), P. Perfetti (Italy), K. Schilling, A. Stadler (Switzerland),
A. Stenger, R. Stong, R. Tauraso (Italy), E. I. Verriest, J. Vukmirovi¢ (Serbia), J. H. Yan (China), and the
proposer.
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A Product Inequality
12341 [2022, 686]. Proposed by George Apostolopoulos Messolonghi, Greece. Let
T1,...,T, be positive real numbers with 37" x? < n, and let S = ¥"I* ; ;. Prove
n 5132
(1) =2
i=1 TiTi+1

where x,,,1 is taken to be 7.

Solution by Roberto Tauraso, Tor Vergata University of Rome, Rome, Italy. We prove the

more general inequality
2 2
n 1\%i S%/n
H(1+f) z(1+ﬁ) : (*)
Yi T

=1

where x1, ..., T, and y1, ..., Yy, are positive real numbers, S = Y7 z;, and T = Y7 1 y;.
The required inequality follows from (*) by letting y; = z;z;+1 and noting that, by the
rearrangement inequality,

n n n
T:Zyi:Zazile SZm?Sn
i=1

i=1 i=1

To prove (*), we compute
22
n 1 ‘Li n 9 1
log H 1+— :inlog(l+—)
i=1 Yi i=1 Yi
noorlodt i o?
=Y a? f - f S g
i=1 0 Y+t Jo iHyi+t

For 0 <t < 1, the Cauchy—Schwarz inequality implies

2

2
n €T n n

52:( y-+t~l) < Y +1)- = (T +nt
2V Vit ;(l i=1yi = ); yi+t’

i=1
SO
2 2
i x; S
i1 Yi t t T + nt
Therefore

n 1 2 2
log H(l+—) / dt > S dtzs—log(1+ﬁ).
1 llyl o T+nt n T

Inequality () follows.

Also solved by P. Bracken, W. J. Cowieson, O. P. Lossers (Netherlands), S. Patra, A. Stadler (Switzerland),
R. Stong, and the proposer.

Characterizing Cyclic Quadrilaterals

12343 [2022, 785]. Proposed by Tran Quang Hung, Hanoi, Vietnam. Let ABCD be a
convex quadrilateral with AB =a, BC'=b,CD =¢, DA=d, AC =e,and BD = f. Prove
that ABC'D is a cyclic quadrilateral (i.e., the four vertices lie on a circle) if and only if

-t (a®-¢?) (0" - &)
ac+bd  (ab+cd)(ad +bc)’
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Solution by Prithwijit De, Mumbai, India. Denote the angles of ABC'D at the four vertices
by A, B, C, and D. Let

P ra?—f2 B ectof

Ty =cosA+cosC =

2ad 2bc ’

2,52 _ 2 24 42 _ 2

TQICOSB+COSDIG+ € +c+ e.
2ab 2¢cd

Algebraic manipulation yields

2abed((ab + cd)T - (ad + be)Ty) =
(ac +bd)(a® = ) (b* = d?) - (ab + cd)(ad + be) (f% - €2).
It therefore suffices to show that ABC'D is cyclic if and only if
(ab+ed)Ty - (ad +be)Ts = 0.

By the sum-to-product formula for the cosine function and the fact that B + D = 27 —
(A+C), we have

(ab+ cd)Ty - (ad + bc)Th =

A- B-D A+C
2((ab+cd)cos( C)+(ad+bc)cos( 5 ))cos( ; )
Since |A - C| and |B — D] are less than 7, the values cos((A - C)/2) and cos((B - D)/2)
are strictly positive. Hence (ab + ¢d)Ty — (ad + be)Ts = 0 if and only if cos((A + C')/2) =
0, which happens if and only if A + C' = 7, which is equivalent to ABC'D being cyclic.

Also solved by G. Fera (Italy), O. Geupel (Germany), M. Goldenberg & M. Kaplan, N. Hodges (UK),
O. P. Lossers (Netherlands), C. R. Pranesachar (India), C. Schacht, A. Stadler (Switzerland), R. Stong,
R. Tauraso (Italy), L. Zhou, Fejéntaldltuka Szeged Problem Solving Group (Hungary), and the proposer.

Linear Combinations of Powers That Are Not Perfect Squares

12346 [2022, 785]. Proposed by Nguyen Quang Minh, Hwa Chong Institution, Bukit
Timah, Singapore. Prove that there are infinitely many integers A such that, for every
nonzero integer x and distinct positive odd integers m and n, the integer ™ + Ax™ is not
a perfect square.

Solution by Yury J. lonin, Central Michigan University, Mount Pleasant, MI. We claim that
the infinite family consisting of the negatives of primes congruent to 3 modulo 8 satisfies
the requirements of the problem.

Let A = —p for such a prime p. Factoring out the perfect square x , We see
that it suffices to show that no 2™ — px™ is a perfect square when m and n are odd and
either m = 1 or n = 1. Suppose otherwise.

First consider m = 1 and set k = (n — 1)/2. With 2 — pz™ = (1 - pz2*), both factors
are negative. Since also 1 — pz2* is relatively prime to z, both —z and pz2* — 1 must be
squares. Modulo p, the equation pz2* — 1 = a? for a positive integer a reduces to a? = —1.
However, when p = 3 (mod 8) (indeed, whenever p = 3 (mod 4)) the value -1 is not a
square modulo p, a contradiction.

Now consider n = 1 and set k = (m — 1)/2, s0 2™ — px = 2(2** - p). The greatest com-
mon divisor of z and z2* — pis 1 or p. Since ™ — px is a square, we have either (i) z = +a?
and z2F — p = +b? or (ii) = = +pa? and z2* — p = £pb?, for some integers a and b.

min{m,n}-1
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Note that squares are congruent to 0, 1, or 4 modulo 8, and recall that p = 3mod 8. In
case (i), if @ is odd, then z2* —p = 6 (mod 8). If a is even, then z2* —p =5 (mod 8). In
both subcases, this value cannot be a square or its negative, so we move on to case (ii).
Substituting for = and simplifying, we have p**~'a** — 1 = +b2. The left side is positive.
However, again because —1 cannot be a square modulo p, the alternative p**~1a** — 1 = b2
is also impossible.

Editorial comment. All solvers had roughly similar approaches. We generalize some of
their families. Using the fact that -2 is a quadratic nonresidue for primes p congruent to 5
or 7 modulo 8, one can show that the family A = p" satisfies the condition of the problem
for such primes p and even r. Another family is given by A = p", where p is a prime
congruent to 7 modulo 16 and 7 is odd. This can be proved by the method of descent.

Also solved by J. Boswell & C. Curtis, W. J. Cowieson, K. Gatesman, P. W. Lindstrom, R. Stong, R. Tauraso
(Italy), H. von Eitzen (Germany), and the proposer.

A Functional Equation With Piecewise Linear Solutions

12347 [2022, 786]. Proposed by Marian Tetiva, Gheorghe Rosca Codreanu National Col-
lege, Birlad, Romania. Let a and b be real numbers with 0 < a < 1 < b. Find all continuous
functions f: R — R such that f(0) =0and f(f(x)) - (a+b)f(x) + abx =0forall x € R.

Solution by Omran Kouba, Higher Institute for Applied Sciences and Technology, Damas-
cus, Syria. We show that there are exactly four solutions, given by

br, ifx>0,

azr, ifx<O0.

axr, ifx >0,

f(x) =ax,  f(x)= bz, f(l’):{ and f($)={

bx, ifx<0,

Clearly these four functions are solutions. Now let f : R — R be continuous and satisfy
f0)=0and f(f(z))-(a+b)f(x)+abr=0forall z € R.Forall x ¢ R,

oo (a+b)f(@) - f(f(2))
ab

This implies that x = y if f(x) = f(y), so f is one-to-one. Since f is continuous, it follows
that f is monotonic, and consequently f o f is increasing. Moreover, the equality

_F(f(@)) + aba

a+b

f(x)

shows that f is increasing. Since f(0) = 0, the sign of f(x) is the same as the sign of . By
(1), we have f(z) > abxz/(a+0b) for all z >0 and f(z) < abx/(a+b) for all = < 0. This
implies that lim, o f(x) = +o00 and lim,_,_o, f(x) = —co. Hence f is bijective.

Let g = f~1. Applying the functional equation to g(g(x)) leads to

6]

1 1 1
o9 - (5 +3 ) 9@) + o =0.
a b ab
Thus, g satisfies the same functional equation as f, but with a and b replaced by 1/a and
1/b.

Suppose z > 0. We define two sequences {x,, }rn>0 and {yn }nz0 by Zo =z, yo = f(z),
and z,41 = f(2,) and yp41 = g(yn) When n > 0. By the functional equations of f and g,
{&n}ns0 and {yy, }nso satisfy the following second-order linear recurrence relations:

To =1, z1 = f(x), T2 — (@ +b)Tpy1 + abxy, =0,
1 1 1

yozf(w)a y1=a, yn+2_(7+7)yn+1+7yn:0~
a b ab
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Solving these recurrence relations, we find that for all n > 0,

J@ b, f@)-ar,

n P - ) (2)
Yp = f(.]?) B bxal—n + f(ﬂ?) B axbl—n. (3)
a-b b-a

We now consider two cases. If f(x) < z, then because f is increasing, we have z,, >
Zn+1 > 0 for all n. Thus the sequence ()50 is nonincreasing and bounded below, so it
must be convergent. Since b > 1, the coefficient of ™ in (2) must be zero, which implies
that f(z) = ax.

On the other hand, if f(z) > z, then similar reasoning shows that the sequence (¥, )n>0
converges, the coefficient of a'~" in (3) is zero, and f(z) = bx.

Thus, for all = > 0, either f(z) = ax or f(x) = bx, so f(x)/x can take only the two
values @ and b on (0, o0). However, since f is continuous, it cannot take both values. We
conclude that either f(z) = ax for all x > 0 or f(x) = bx for all z > 0.

Applying the above analysis for z > 0 to the function — f (—x), we conclude that either
f(xz) =ax forall z <0 or f(x) = bx for all z < 0. Thus there are no solutions other than
the four listed earlier.

Also solved by J. Boswell & C. Curtis, H. Chen (China), W. J. Cowieson, H. von Eitzen (Germany), D. Hen-
derson, N. Hodges (UK), O. P. Lossers (Netherlands), R. Mortini (Luxembourg), K. Schilling, R. Stong,
R. Tauraso (Italy), and the proposer.

A Variation on the Josephus Problem

12348 [2022, 786]. Proposed by Erik Vigren, Uppsala, Sweden, and Hans Rullgard,
Kungdilv, Sweden. We have n people in a circle, numbered from 1 to n clockwise. They
are removed one at a time as follows, until just one remains. At each step, remove the
nth person among those remaining, where the count starts at the lowest-numbered person
remaining and proceeds clockwise. Let W' (n) be the number of the last person remaining.
For example, with n = 5, we remove in order the people numbered 5, 1, 3, and 2, and so
W (5) = 4. (This is a variation of the classic Josephus problem.)

(a) What is W (10'2)?

(b) For n > 5, show that W (n) = n — 4 if and only if /2 is a Sophie Germain prime (i.e.,
n/2 and n + 1 are prime).

(c) Find the smallest even number that does not equal W (n) for any n.

Composite solution by Roberto Tauraso, Tor Vergata University of Rome, Rome, Italy, and
the proposers.
(a) By reversing the procedure, we show W (1012) =671,046,354,072. As in the problem
statement, the number of a person is that person’s original index and remains unchanged.
The position of a person at a given time is that person’s index among the remaining people;
it counts the remaining people with smaller numbers (plus 1).

Consider the point in the process when m people remain. In the next step, skipping
n — 1 people means passing through the entire list 7 times before stopping at the person to
be removed, where r = | (n — 1)/m]|. The person removed will be in position n — rm. We
say that removals whose associated value of r are the same occur in the same round, and
we label this round with the value r. For example, in round 0 we remove person n, and
in round 1 we remove all the remaining odd-numbered people, starting with person 1. The
rounds occur in increasing order, but the round numbers are not consecutive. For example,
when n = 9 there is no round 3, because [8/3| = 2 and | 8/2] = 4. Rather than reversing the
procedure one removal at a time, the computation is quicker if we reverse it one round at a
time. This will also be useful in part (c).
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Now consider the time when a round has just been finished and k rounds remain to be
completed. Let my, denote the number of people remaining at this time, and let p; denote
the position at this time of the person P who will be the last person remaining. Thus
mgo =1 and pg = 1, since P is never removed. For k > 1, let r; denote the number of the
round about to start. By definition, ry, = [(n — 1) /my .

The last removal in round 1 occurs with my + 1 people remaining, so

Thk+1 :[(n—l)/(mk-i—l)J. (1)

When 741 > 0, the number of people remaining at the start of round 7.1 is the largest m
such that 741 = [(n - 1)/m|; that is,

Mps1 = [(n = 1) [Thsr ] 2

During round rj.1, when m people remain, the person in position n — rg.1m will be
removed. This position strictly increases throughout round 7.1 as m decreases from m.1
to my + 1. Meanwhile, the position of P decreases from pg+1 to pg. Since P reaches pg,
the position of P must decrease on the step that starts with m people remaining if and only
if

N = Tge1M < P 3

By (2), we have (n—1)/rgs1 < mpy1 + 1, which yields n — rgyq(mge +1) < 1.
Also, the definition of ry implies (n —1)/myg > rg > rg41 + 1, from which we obtain
n —rpe1my > my, + 1. Together, these inequalities yield

n—rk+1(mk+1 + 1) <1l<pr<mp+1<n—rigamg.
It follows that there is some integer j with 0 < j < myg41 — my such that
n =11 (Mpr1 = (G = 1)) <pr <n=rper(Misr - J)-

By (3), there will then be exactly j steps during round 7.1 on which the position of P
decreases by 1. Therefore,

P+ The1 (Mps1 +1) =1

Tk+1

Pk+l =Pk +J =Dr + “4)

We now have a recursive procedure, starting from mg = pg = 1. Given my and py,
we use my to compute 741 by (1), ri41 to compute myy1 by (2), and then all of
{pk,Tk+1,Mi+1} to compute prq by (4). We run the recursion until reaching & such
that my, equals n — 1. The original position (and number) of P is then py. In the particular
instance n = 1012, we obtain k = 1999997, leading to W (n) as claimed.

(b) Assume n > 5. Because all people with odd numbers will have been removed by the
end of round 1, W (n) is an even number less than 7. In particular, n — 4 is removed by
then if n is odd, so we need only consider even n. When n is even, the person with the
larger number will be removed when only two people remain. Therefore, W(n) =n — 4 if
and only if the last two people are numbered n — 4 and n — 2.

Suppose that m people remain, where m < n/2 — 1. Recall that n is removed first and
then all odd numbers. If both n — 4 and n — 2 remain, then they occupy positions m — 1 and
m. To avoid removing either, n must not be congruent to m — 1 or m modulo m. That is,
we avoid removing person n — 2 if and only if n is not divisible by any number from 3 to
n/2 — 1, meaning that n/2 is prime. Similarly, we avoid removing person n — 4 if and only
if n — 1 is not divisible by any number from 3 to n/2 — 1, meaning that n + 1 is prime.

(c) We show that the smallest even number that does not equal W (n) for any n is 34. The
table below gives the smallest value of n yielding each value of W (n) less than 34, by
explicit computation.
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W(n)‘Z 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
n ‘35716 11 13 50 17 19 76 23 56 248 29 31 424

We need only consider n > 34 and show that in all cases person 34 is removed at some
point in the process. We have observed that person 7 is removed in round 0, and all smaller
odd numbers are removed in round 1. Person 34 is then in position 17.

Since round 7 is defined as {m: |[(n —1)/m| = r}, the number of people remaining
when round 7 ends is min{m: |(n - 1)/m| = r} — 1. This number is [(n - 1)/(r + 1)].
Let a,,1 be the integer such that

[(n=1)/(r+1)| = (n=ar1)/(r+1).

The first person removed in round 7 + 1 is in position a..,1 at the start of the round. For
each subsequent removal in round 7 + 1, the removed element pushes the round-starting
position of the next person removed up by r + 2. That is, the key additional observation is
that positions at the start of round r + 1 of the people removed in round r + 1 are

Ary1, Qri1+T+2, Qi1 +2r+4,....

For even n, those removed in round 2 start the round in positions 2, 5, 8, 11, 14, 17, ....
Hence we may assume n is odd.

For odd n, those removed in round 2 start the round in positions 1, 4, 7, 10, 13, 16, ....
Thus after round 2, person 34 is in position 11.

When n =3 (mod 6), those removed in round 3 start the round in positions 3, 7, 11,

15, ..., so we may forbid this case.
When n € {1,5,7,11} (mod 12), getting (n — a3)/3 to be an integer requires agz €
{1,2}. Those removed in round 3 start the round in positions 1, 5, 9, 13, ..., or positions

2,6, 10, 14, .... In both cases, person 34 ends round 3 in position 8.

When n € {7,11} (mod 12), we have a4 = 3, and those starting round 4 in positions 3,
8, ...are removed. Hence we may forbid this case.

When n € {1,5} (mod 12), we have a4 = 1, and those starting round 4 in positions
1, 6, ...are removed. Hence person 34 occupies position 6 at the end of round 4. Since
as € {1,2,3,4,5}, round 5 removes exactly one person from the first five positions, so
person 34 ends round 5 in position 5.

When n =5 (mod 12), we have ag = 5, so round 6 removes person 34.

Hence we may assume n. = 1 (mod 12). If also n > 73, then at least 12 people remain at
the end of round 5. When the number of people remaining is in {12, 6,4, 3,2}, the person
occupying the first position at that time will be removed. This means that person 34, who
is already as early as position 5 when at least 12 people remain, is removed while a person
still remains.

To complete the proof, it remains only to check explicitly that W (n) # 34 when n €
{37,49,61}.

Editorial comment. Reasoning like that for part (b) shows that W (n) = n — 1 if and only
if n is an odd prime. Round r actually eliminates one or more people if (n —1)/(r +1) <
| (n = 1)/r]. This holds for all r with r < 7*, where r* = | (v/4n — 3 — 1)/2]. Thereafter, at
most one person is removed per round. As a result, the number of rounds in which people
are removed is * + [(n - 1)/(r* + 1) ].

Also solved by O. P. Lossers (Netherlands). Parts (b) and (c¢) also solved by K. Schilling and Eagle Problem
Solvers.

A Lobachevsky-type Formula
12351 [2022, 886]. Proposed by Sedn Stewart, King Abdullah University of Science and
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Technology, Thuwal, Saudi Arabia. Evaluate
oo In (cos2 x) sin®
[ nlota)ats
0

23 (1+2cos?x)

Solution by Mohammed Aassila, Strasbourg, France. Let I denote the requested integral.

We prove that
1=-" (ln2+1n(1+\/§)).
4 V3
We have
f ln cos x sm3ac 1 o /(k+1)7r In (cos2 a:) sin® z
) 23 (1+2cos?x) 2, ke 3 (1+2cos?x)

Z f (-1)*In (cos® z) sin® x
(x+ kﬂ')3 (1+2cos?z)
f °° (_1)’C In (cos2 z) sin® J
"2 k —~ _(z+km)3 1+2cos?x “
where the final interchange of integration and summation can be justified by the dominated
convergence theorem.
To evaluate the summation in the last formula, we start with the equation

oo (_ 1 ) k ~ 1

2

oo T+ KT sinzx

(See L. S. Gradshteyn, I. M. Ryzhik (2007), Table of Integrals, Series, and Products, Tth
ed., Burlington, MA: Academic Press, equation 1.422.6.) Differentiating twice, we get
i (-DF T+cos’x
poo (+km)3 2sin®ax

so this gives

dx

1 7 (1+cos?z)ln (0052 z) ™/2 (1 + cos? z)In (cosx)
I== dx = f
1+2cos?x 1+2cos?x

7/ /2
= % f In(cosx)dx + = f In(cosa)
0

1+2cos?2zx

Both of these integrals are special cases of equation 4.385.3 in Gradshteyn and Ryzhik:

/2 In(cos ) ™ b
/ — dr = — ln( )
0 b?sin“x +a?cos?x 2ab a+b

for a,b > 0. Applying this with b =1 and both a = 1 and a = \/3 leads to the claimed
answer.

Editorial comment. As several solvers noted, the beginning of this argument proves a
Lobachevsky-type result: For any continuous function f(x) that is periodic with period
T,

[: sin’ mf( )dx—ffoﬂ(l+coszx)f(x)d$.
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Also solved by T. Amdeberhan, A. Berkane (Algeria), P. Bracken, B. Bradie, C. Burnette, H. Chen (US),
B. E. Davis, M. L. Glasser, G. C. Greubel, N. Hodges (UK), W. Janous (Austria), L. Kempeneers & J. V. Cast-
eren (Belgium), O. Kouba (Syria), K. Nelson, M. Omarjee (France), A. Stadler (Switzerland), A. Stenger,
R. Stong, R. Tauraso (Italy), Y. Zhang (China), and the proposer.

CLASSICS

C25. Let wg, wq, . .. be the sequence of Fibonacci words, defined by wg = 0, wy = 1, and,
for n > 2, w, = wy_2w,-1, the concatenation of w,,_ and w,,_1. Thus the sequence begins
0,1,01,101,01101,10101101,0110110101101, . ... Show that, for n > 3, removing the
first two symbols from w,, yields a palindrome.

The Tennis Ladder

C24. Due to Colin L. Mallows. Over the history of a certain tennis club, every player has
played at least one match against every other player. Matches are played one at a time, and
after each match a ranking of the players in the club is computed as follows. Starting with
the most recent match and working backwards through time, use the match results to build
up a partial order. Ignore any match that is inconsistent with more recent results. The final
result is guaranteed to be a linear order, since any incomparability between a pair of players
is resolved when a match between them is encountered. This linear order becomes the new
club ranking. Prove or disprove: A player cannot rise in the club ranking by intentionally
losing a match.

Solution. The assertion is false. Suppose that the results of the last nine matches among six
players are as follows, where we write a > b for a match where player a defeats player b
and we list the matches from oldest to most recent.

2>3, 6>1, 2>4, 1>2, 6>4, 4>5, 3>4, 3>6, 5>6

The ranking at this momentis 1 > 2 >3 >4 > 5 > 6, with player 3 in third place. However,
if player 3 loses the next match to player 5, the ranking becomes 5 > 3 > 6 > 1 > 2 > 4, with
player 3 in second place. So player 3 ranks higher after losing.

Editorial comment. The problem appeared as E3240 [1987, 996; 1989, 530] in this
MONTHLY. The problem statement has two interpretations. The strong form asks if a
player can rank higher immediately after throwing a match. The weak form asks if a player
can rank higher today by deciding to forfeit a match that took place in the past. No solu-
tion to the strong form of the problem was received from the MONTHLY readership other
than the proposer’s solution, which involved seven players. The example here involves six
players. This raises the question of whether there is an example with five players.

One can show that any time a player defeats a lower-ranked opponent (or loses to a
higher-ranked opponent), the ranking remains unchanged. However, reversing the outcome
of each match in the example above shows that defeating a higher-ranked opponent can
lower one’s overall ranking.

Say that a ranking algorithm respects duality if changing all wins to losses reverses the
resulting ranking. A familiar algorithm for ranking tennis club members is as follows: If
a lower-ranked player A defeats a higher-ranked player B, the new ranking is formed by
replacing B with A in the prior ranking and moving B and all the players ranked between A
and B down one spot. If a higher-ranked player defeats a lower-ranked player, the ranking
remains unchanged. One concern with this usual algorithm is that it fails to respect duality.
The algorithm of this problem is an alternative that does respect duality. The existence
of the example above, however, shows that this ranking system violates a certain kind of
monotonicity and suggests that it is an unreasonable system for actual use.
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