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PROBLEMS AND SOLUTIONS

Edited by Daniel H. Ullman, Daniel J. Velleman,
Stan Wagon, and Douglas B. West

with the collaboration of Paul Bracken, Ezra A. Brown, Hongwei Chen, Zachary Franco,
George Gilbert, László Lipták, Rick Luttmann, Hosam Mahmoud, Frank B. Miles, Lenhard
Ng, Rajesh Pereira, Kenneth Stolarsky, Richard Stong, Lawrence Washington, and Li Zhou.

Proposed problems, solutions, and classics should be submitted online at
americanmathematicalmonthly.submittable.com/submit.

Proposed problems must not be under consideration concurrently at any other jour-
nal, nor should they be posted to the internet before the deadline date for solutions.
Proposed solutions to the problems below must be submitted by September 30, 2024.
Proposed classics should include the problem statement, solution, and references.
More detailed instructions are available online. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

12461. Proposed by Nikolai Osipov, Siberian Federal University, Krasnoyarsk, Russia.
Find all triples (x, y, z) of positive integers such that x2 + y2 = (y z − 1)3.

12462. Proposed by Tho Nguyen Xuan, Hanoi University of Science and Technology,
Hanoi, Vietnam. What is the minimum value of

∣a + b + c∣ (
1

∣a − b∣
+

1

∣b − c∣
+

1

∣c − a∣
)

over all triples a, b, c of distinct real numbers satisfying a2 + b2 + c2 = 2(ab + bc + ca)?

12463. Proposed by Roberto Tauraso, Tor Vergata University of Rome, Rome, Italy. For a
positive integer n, let Fn be the nth Fibonacci number (F0 = 0, F1 = 1, and Fn = Fn−1 +
Fn−2 for n ≥ 2). Show that when p is prime,

(

p−1
∑
k=0
(
2k

k
)Fk2

p−k−1
)(

p−1
∑
k=0
(
2k

k
)

2

8p−k−1)

is divisible by p.

12464. Proposed by Farhood Pouryosefi Kermani, Tehran, Iran. For a binary string X of
length n and an integer k with 1 ≤ k ≤ n, let πk(X) denote the result of reversing the
first k elements of X and also the last n − k elements of X . For example, π2(1,0,0,1,1) =
(0,1,1,1,0). Let dk(X) be the number of entries in which X and πk(X) differ, and define
A(n) to be the maximum of mink dk(X)/n over all choices of X .
(a) Prove A(n) ≤ 1/2.
(b) Prove that limn→∞A(n) exists.
(c) Find the value of limn→∞A(n).

doi text goes here
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12465. Proposed by Lawrence Glasser, Clarkson University, Potsdam, NY. Prove

∞
∑
n=0

1

cosh((4n + 2)π)
=
((21/4 − 1)

2
Γ (1/4))

2

29/2 π3/2 .

12466. Proposed by Khakimboy Egamberganov, University of Edinburgh, Edinburgh, UK.
Let ABCD be a convex quadri-
lateral and let AKB, BLC,
CMD, DNA be similar right-
angled triangles constructed
externally to ABCD, where
∠AKB = ∠BLC = ∠CMD =

∠DNA = 90○ and ∠KAB =
∠LCB = ∠MCD = ∠NAD. Let
E and F bisect the diagonals AC
and BD, respectively, and let P be
the intersection of KM and LN .
Prove that ∠EPF is a right angle.

P

A B

C

D
N

K

M

L
E

F

12467. Proposed by Lajos László, Eötvös Loránd University, Budapest, Hungary. Given
any real number c, it is not hard to see that there is a unique differentiable function s ∶
[1,∞) → R such that (1) s(n) = 1/n for all positive integers n, (2) s is quadratic or linear
on [n,n + 1] for all positive integers n, and (3) the right derivative of s at 1 is c. (A
function satisfying (1) and (2) is a quadratic spline.) For what values of c is s decreasing
and convex?

SOLUTIONS

A Nilpotent Commutator

12339 [2022, 686]. Proposed by Cristian Chiser, Elena Cuza College, Craiova, Romania.
Let A and B be complex n-by-n matrices for which A2 + xB2 = y (AB −BA), where x
is a positive real number and y is a real number such that (1/π) cos−1 ((y2 − x)/(y2 + x))
is irrational. Prove that (AB −BA)n is the zero matrix.

Solution by Kyle Gatesman, Fairfax, VA. Let U = A + i
√
xB and V = A − i

√
xB. Note that

y ± i
√
x ≠ 0 because y is real and x is positive. Since

UV = A2
+ xB2

− i
√
x(AB −BA) = (y − i

√
x)(AB −BA)

and

V U = A2
+ xB2

+ i
√
x(AB −BA) = (y + i

√
x)(AB −BA),

we have

V U =
y + i
√
x

y − i
√
x
UV =

y2 − x + 2yi
√
x

y2 + x
UV.

Let (y + i
√
x)/(y − i

√
x) = cos θ + i sin θ = eiθ. The spectrum of V U is eiθ times that of

UV . By hypothesis, θ is not a rational multiple of π, so einθ ≠ 1 for all nonzero integers n.
It is well known for complex n-by-n matrices U and V , that UV and V U have the

same characteristic polynomial. Hence any eigenvalue of UV or V U is an eigenvalue of the
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other. Thus the spectrum of UV is invariant under multiplication by eiθ. Since the complex
numbers eiθ, e2iθ, e3iθ, . . . are distinct and the spectrum of UV has cardinality at most
n, we conclude that the only eigenvalue of UV is zero. It follows that the characteristic
polynomial of AB −BA is λn. By the Cayley–Hamilton Theorem, (AB −BA)n is the
zero matrix.

Also solved by C. P. Anil Kumar (India), S. Bhadra, E. A. Herman, O. P. Lossers (Netherlands), M. Omarjee
(France), R. Stong, L. Zhou, and the proposer.

A Nascent Delta Function

12340 [2022, 686]. Proposed by Antonio Garcia, Strasbourg, France. Let
g ∶ [0,1] → R be continuous. Prove that

lim
n→∞

n

2n
∫

1

0

g(x)

xn + (1 − x)n
dx = Cg(1/2)

for some constant C (independent of g), and determine the value of C.

Solution by Missouri State University Problem Solving Group, Missouri State University,
Springfield, MO. Substituting u = n(2x − 1) and letting χ[−n,n] denote the characteristic
function of [−n,n] gives

n

2n
∫

1

0

g(x)

xn + (1 − x)n
dx =

1

2
∫

∞

−∞
g ( 1

2
+ u

2n
)χ[−n,n](u)

(1 + u
n
)
n
+ (1 − u

n
)
n du.

Since g is continuous, we may choose a K > 0 such that ∣g(x)∣ ≤K on [0,1]. Further, for
n ≥ 2, the binomial theorem gives

(1 +
u

n
)
n

+ (1 −
u

n
)
n

≥ 2(1 + (
n

2
)
u2

n2
) ≥ 2(1 +

u2

4
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Therefore for n ≥ 2,

1

2
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g ( 1
2
+ u

2n
)χ[−n,n](u)

(1 + u
n
)
n
+ (1 − u

n
)
n

RRRRRRRRRRR

≤
K

4 + u2
.

This upper bound has finite integral, so the dominated convergence theorem applies, and
we get

lim
n→∞

n

2n
∫

1

0

g(x)

xn + (1 − x)n
dx =

1

2
∫

∞

−∞
lim
n→∞

g ( 1
2
+ u

2n
)

(1 + u
n
)
n
+ (1 − u

n
)
n du

=
1

2
∫

∞

−∞
g(1/2)

eu + e−u
du

=
1

2
g(1/2)arctan(eu)∣

∞

−∞
=
π

4
g(1/2).

Also solved by M. Aassuka (France), A. Berkane (Algeria), S. Bhadra (India), H. Chen (US), W. J. Cowieson,
M.-C. Fan (China), K. Gatesman, R. Guadalupe (Philippines), E. A. Herman, N. Hodges (UK), F. Holland
(Ireland), E. J. Ionascu, S. Kaczkowski, O. Kouba (Syria), C. Krattenthaler (Germany), G. Lavau (France),
J. H. Lindsey II, P. W. Lindstrom, O. P. Lossers (Netherlands), F. Masroor, R. Mortini (Luxembourg) & R. Rupp
(Germany), M. Omarjee (France), D. Pascuas (Spain), P. Perfetti (Italy), K. Schilling, A. Stadler (Switzerland),
A. Stenger, R. Stong, R. Tauraso (Italy), E. I. Verriest, J. Vukmirović (Serbia), J. H. Yan (China), and the
proposer.

May 2024] PROBLEMS AND SOLUTIONS 3



Mathematical Assoc. of America American Mathematical Monthly 131:5 January 31, 2024 10:21 a.m. ColMay2024.tex page 4

A Product Inequality

12341 [2022, 686]. Proposed by George Apostolopoulos, Messolonghi, Greece. Let
x1, . . . , xn be positive real numbers with ∑n

i=1 x
2
i ≤ n, and let S = ∑n

i=1 xi. Prove

n

∏
i=1
(1 +

1

xixi+1
)

x2i
≥ 2S

2/n,

where xn+1 is taken to be x1.

Solution by Roberto Tauraso, Tor Vergata University of Rome, Rome, Italy. We prove the
more general inequality

n

∏
i=1
(1 +

1

yi
)

x2i
≥ (1 +

n

T
)
S2/n

, (∗)

where x1, . . . , xn and y1, . . . , yn are positive real numbers, S = ∑n
i=1 xi, and T = ∑

n
i=1 yi.

The required inequality follows from (∗) by letting yi = xixi+1 and noting that, by the
rearrangement inequality,

T =
n

∑
i=1

yi =
n

∑
i=1

xixi+1 ≤
n

∑
i=1

x2
i ≤ n.

To prove (∗), we compute

log
⎛

⎝

n

∏
i=1
(1 +

1

yi
)

x2i ⎞

⎠
=

n

∑
i=1

x2
i log (1 +

1

yi
)

=
n

∑
i=1

x2
i ∫

1

0

dt

yi + t
= ∫

1

0

n

∑
i=1

x2
i

yi + t
dt.

For 0 ≤ t ≤ 1, the Cauchy–Schwarz inequality implies

S2
= (

n

∑
i=1

√
yi + t ⋅

xi
√
yi + t

)

2

≤
n

∑
i=1
(yi + t) ⋅

n

∑
i=1

x2
i

yi + t
= (T + nt)

n

∑
i=1

x2
i

yi + t
,

so
n

∑
i=1

x2
i

yi + t
≥

S2

T + nt
.

Therefore

log
⎛

⎝

n

∏
i=1
(1 +

1

yi
)

x2i ⎞

⎠
= ∫

1

0

n

∑
i=1

x2
i

yi + t
dt ≥ ∫

1

0

S2

T + nt
dt =

S2

n
log (1 +

n

T
) .

Inequality (∗) follows.

Also solved by P. Bracken, W. J. Cowieson, O. P. Lossers (Netherlands), S. Patra, A. Stadler (Switzerland),
R. Stong, and the proposer.

Characterizing Cyclic Quadrilaterals

12343 [2022, 785]. Proposed by Tran Quang Hung, Hanoi, Vietnam. Let ABCD be a
convex quadrilateral with AB = a, BC = b, CD = c, DA = d, AC = e, and BD = f . Prove
that ABCD is a cyclic quadrilateral (i.e., the four vertices lie on a circle) if and only if

f2 − e2

ac + bd
=
(a2 − c2) (b2 − d2)

(ab + cd)(ad + bc)
.
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Solution by Prithwijit De, Mumbai, India. Denote the angles of ABCD at the four vertices
by A, B, C, and D. Let

T1 = cosA + cosC =
d2 + a2 − f2

2ad
+
b2 + c2 − f2

2bc
,

T2 = cosB + cosD =
a2 + b2 − e2

2ab
+
c2 + d2 − e2

2cd
.

Algebraic manipulation yields

2abcd((ab + cd)T1 − (ad + bc)T2) =

(ac + bd)(a2 − c2)(b2 − d2) − (ab + cd)(ad + bc)(f2
− e2).

It therefore suffices to show that ABCD is cyclic if and only if

(ab + cd)T1 − (ad + bc)T2 = 0.

By the sum-to-product formula for the cosine function and the fact that B +D = 2π −
(A +C), we have

(ab + cd)T1 − (ad + bc)T2 =

2((ab + cd) cos(
A −C

2
) + (ad + bc) cos(

B −D

2
)) cos(

A +C

2
) .

Since ∣A −C ∣ and ∣B −D∣ are less than π, the values cos((A −C)/2) and cos((B −D)/2)
are strictly positive. Hence (ab + cd)T1 − (ad + bc)T2 = 0 if and only if cos((A +C)/2) =
0, which happens if and only if A +C = π, which is equivalent to ABCD being cyclic.

Also solved by G. Fera (Italy), O. Geupel (Germany), M. Goldenberg & M. Kaplan, N. Hodges (UK),
O. P. Lossers (Netherlands), C. R. Pranesachar (India), C. Schacht, A. Stadler (Switzerland), R. Stong,
R. Tauraso (Italy), L. Zhou, Fejéntaláltuka Szeged Problem Solving Group (Hungary), and the proposer.

Linear Combinations of Powers That Are Not Perfect Squares

12346 [2022, 785]. Proposed by Nguyen Quang Minh, Hwa Chong Institution, Bukit
Timah, Singapore. Prove that there are infinitely many integers A such that, for every
nonzero integer x and distinct positive odd integers m and n, the integer xm +Axn is not
a perfect square.

Solution by Yury J. Ionin, Central Michigan University, Mount Pleasant, MI. We claim that
the infinite family consisting of the negatives of primes congruent to 3 modulo 8 satisfies
the requirements of the problem.

Let A = −p for such a prime p. Factoring out the perfect square xmin{m,n}−1, we see
that it suffices to show that no xm − pxn is a perfect square when m and n are odd and
either m = 1 or n = 1. Suppose otherwise.

First consider m = 1 and set k = (n − 1)/2. With x − pxn = x(1 − px2k), both factors
are negative. Since also 1 − px2k is relatively prime to x, both −x and px2k − 1 must be
squares. Modulo p, the equation px2k − 1 = a2 for a positive integer a reduces to a2 ≡ −1.
However, when p ≡ 3 (mod 8) (indeed, whenever p ≡ 3 (mod 4)) the value −1 is not a
square modulo p, a contradiction.

Now consider n = 1 and set k = (m − 1)/2, so xm − px = x(x2k − p). The greatest com-
mon divisor of x and x2k − p is 1 or p. Since xm − px is a square, we have either (i) x = ±a2

and x2k − p = ±b2 or (ii) x = ±pa2 and x2k − p = ±pb2, for some integers a and b.
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Note that squares are congruent to 0, 1, or 4 modulo 8, and recall that p ≡ 3mod8. In
case (i), if a is odd, then x2k − p ≡ 6 (mod 8). If a is even, then x2k − p ≡ 5 (mod 8). In
both subcases, this value cannot be a square or its negative, so we move on to case (ii).
Substituting for x and simplifying, we have p2k−1a4k − 1 = ±b2. The left side is positive.
However, again because −1 cannot be a square modulo p, the alternative p2k−1a4k − 1 = b2

is also impossible.

Editorial comment. All solvers had roughly similar approaches. We generalize some of
their families. Using the fact that −2 is a quadratic nonresidue for primes p congruent to 5
or 7 modulo 8, one can show that the family A = pr satisfies the condition of the problem
for such primes p and even r. Another family is given by A = pr, where p is a prime
congruent to 7 modulo 16 and r is odd. This can be proved by the method of descent.

Also solved by J. Boswell & C. Curtis, W. J. Cowieson, K. Gatesman, P. W. Lindstrom, R. Stong, R. Tauraso
(Italy), H. von Eitzen (Germany), and the proposer.

A Functional Equation With Piecewise Linear Solutions

12347 [2022, 786]. Proposed by Marian Tetiva, Gheorghe Roşca Codreanu National Col-
lege, Bîrlad, Romania. Let a and b be real numbers with 0 < a < 1 < b. Find all continuous
functions f ∶ R→ R such that f(0) = 0 and f(f(x)) − (a + b)f(x) + abx = 0 for all x ∈ R.

Solution by Omran Kouba, Higher Institute for Applied Sciences and Technology, Damas-
cus, Syria. We show that there are exactly four solutions, given by

f(x) = ax, f(x) = bx, f(x) =

⎧⎪⎪
⎨
⎪⎪⎩

ax, if x ≥ 0,
bx, if x < 0,

and f(x) =

⎧⎪⎪
⎨
⎪⎪⎩

bx, if x ≥ 0,
ax, if x < 0.

Clearly these four functions are solutions. Now let f ∶ R→ R be continuous and satisfy
f(0) = 0 and f(f(x)) − (a + b)f(x) + abx = 0 for all x ∈ R. For all x ∈ R,

x =
(a + b)f(x) − f(f(x))

ab
.

This implies that x = y if f(x) = f(y), so f is one-to-one. Since f is continuous, it follows
that f is monotonic, and consequently f ○ f is increasing. Moreover, the equality

f(x) =
f(f(x)) + abx

a + b
(1)

shows that f is increasing. Since f(0) = 0, the sign of f(x) is the same as the sign of x. By
(1), we have f(x) > abx/(a + b) for all x > 0 and f(x) < abx/(a + b) for all x < 0. This
implies that limx→∞ f(x) = +∞ and limx→−∞ f(x) = −∞. Hence f is bijective.

Let g = f−1. Applying the functional equation to g(g(x)) leads to

g(g(x)) − (
1

a
+
1

b
) g(x) +

1

ab
x = 0.

Thus, g satisfies the same functional equation as f , but with a and b replaced by 1/a and
1/b.

Suppose x > 0. We define two sequences {xn}n≥0 and {yn}n≥0 by x0 = x, y0 = f(x),
and xn+1 = f(xn) and yn+1 = g(yn) when n ≥ 0. By the functional equations of f and g,
{xn}n≥0 and {yn}n≥0 satisfy the following second-order linear recurrence relations:

x0 = x, x1 = f(x), xn+2 − (a + b)xn+1 + abxn = 0,

y0 = f(x), y1 = x, yn+2 − (
1

a
+
1

b
) yn+1 +

1

ab
yn = 0.
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Solving these recurrence relations, we find that for all n ≥ 0,

xn =
f(x) − bx

a − b
an +

f(x) − ax

b − a
bn, (2)

yn =
f(x) − bx

a − b
a1−n +

f(x) − ax

b − a
b1−n. (3)

We now consider two cases. If f(x) ≤ x, then because f is increasing, we have xn ≥

xn+1 > 0 for all n. Thus the sequence (xn)n≥0 is nonincreasing and bounded below, so it
must be convergent. Since b > 1, the coefficient of bn in (2) must be zero, which implies
that f(x) = ax.

On the other hand, if f(x) > x, then similar reasoning shows that the sequence (yn)n≥0
converges, the coefficient of a1−n in (3) is zero, and f(x) = bx.

Thus, for all x > 0, either f(x) = ax or f(x) = bx, so f(x)/x can take only the two
values a and b on (0,∞). However, since f is continuous, it cannot take both values. We
conclude that either f(x) = ax for all x > 0 or f(x) = bx for all x > 0.

Applying the above analysis for x > 0 to the function −f(−x), we conclude that either
f(x) = ax for all x < 0 or f(x) = bx for all x < 0. Thus there are no solutions other than
the four listed earlier.

Also solved by J. Boswell & C. Curtis, H. Chen (China), W. J. Cowieson, H. von Eitzen (Germany), D. Hen-
derson, N. Hodges (UK), O. P. Lossers (Netherlands), R. Mortini (Luxembourg), K. Schilling, R. Stong,
R. Tauraso (Italy), and the proposer.

A Variation on the Josephus Problem

12348 [2022, 786]. Proposed by Erik Vigren, Uppsala, Sweden, and Hans Rullgård,
Kungälv, Sweden. We have n people in a circle, numbered from 1 to n clockwise. They
are removed one at a time as follows, until just one remains. At each step, remove the
nth person among those remaining, where the count starts at the lowest-numbered person
remaining and proceeds clockwise. Let W (n) be the number of the last person remaining.
For example, with n = 5, we remove in order the people numbered 5, 1, 3, and 2, and so
W (5) = 4. (This is a variation of the classic Josephus problem.)
(a) What is W (1012)?
(b) For n ≥ 5, show that W (n) = n − 4 if and only if n/2 is a Sophie Germain prime (i.e.,
n/2 and n + 1 are prime).
(c) Find the smallest even number that does not equal W (n) for any n.

Composite solution by Roberto Tauraso, Tor Vergata University of Rome, Rome, Italy, and
the proposers.
(a) By reversing the procedure, we show W (1012) = 671,046,354,072. As in the problem
statement, the number of a person is that person’s original index and remains unchanged.
The position of a person at a given time is that person’s index among the remaining people;
it counts the remaining people with smaller numbers (plus 1).

Consider the point in the process when m people remain. In the next step, skipping
n − 1 people means passing through the entire list r times before stopping at the person to
be removed, where r = ⌊(n − 1)/m⌋. The person removed will be in position n − rm. We
say that removals whose associated value of r are the same occur in the same round, and
we label this round with the value r. For example, in round 0 we remove person n, and
in round 1 we remove all the remaining odd-numbered people, starting with person 1. The
rounds occur in increasing order, but the round numbers are not consecutive. For example,
when n = 9 there is no round 3, because ⌊8/3⌋ = 2 and ⌊8/2⌋ = 4. Rather than reversing the
procedure one removal at a time, the computation is quicker if we reverse it one round at a
time. This will also be useful in part (c).
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Now consider the time when a round has just been finished and k rounds remain to be
completed. Let mk denote the number of people remaining at this time, and let pk denote
the position at this time of the person P who will be the last person remaining. Thus
m0 = 1 and p0 = 1, since P is never removed. For k ≥ 1, let rk denote the number of the
round about to start. By definition, rk = ⌊(n − 1)/mk⌋.

The last removal in round rk+1 occurs with mk + 1 people remaining, so

rk+1 = ⌊(n − 1)/(mk + 1)⌋. (1)

When rk+1 > 0, the number of people remaining at the start of round rk+1 is the largest m
such that rk+1 = ⌊(n − 1)/m⌋; that is,

mk+1 = ⌊(n − 1)/rk+1⌋. (2)

During round rk+1, when m people remain, the person in position n − rk+1m will be
removed. This position strictly increases throughout round rk+1 as m decreases from mk+1
to mk + 1. Meanwhile, the position of P decreases from pk+1 to pk. Since P reaches pk,
the position of P must decrease on the step that starts with m people remaining if and only
if

n − rk+1m ≤ pk. (3)

By (2), we have (n − 1)/rk+1 < mk+1 + 1, which yields n − rk+1(mk+1 + 1) < 1.
Also, the definition of rk implies (n − 1)/mk ≥ rk ≥ rk+1 + 1, from which we obtain
n − rk+1mk ≥mk + 1. Together, these inequalities yield

n − rk+1(mk+1 + 1) < 1 ≤ pk <mk + 1 ≤ n − rk+1mk.

It follows that there is some integer j with 0 ≤ j ≤mk+1 −mk such that

n − rk+1(mk+1 − (j − 1)) ≤ pk < n − rk+1(mk+1 − j).

By (3), there will then be exactly j steps during round rk+1 on which the position of P
decreases by 1. Therefore,

pk+1 = pk + j = pk + ⌊
pk + rk+1 (mk+1 + 1) − n

rk+1
⌋ . (4)

We now have a recursive procedure, starting from m0 = p0 = 1. Given mk and pk,
we use mk to compute rk+1 by (1), rk+1 to compute mk+1 by (2), and then all of
{pk, rk+1,mk+1} to compute pk+1 by (4). We run the recursion until reaching k such
that mk equals n − 1. The original position (and number) of P is then pk. In the particular
instance n = 1012, we obtain k = 1999997, leading to W (n) as claimed.
(b) Assume n ≥ 5. Because all people with odd numbers will have been removed by the
end of round 1, W (n) is an even number less than n. In particular, n − 4 is removed by
then if n is odd, so we need only consider even n. When n is even, the person with the
larger number will be removed when only two people remain. Therefore, W (n) = n − 4 if
and only if the last two people are numbered n − 4 and n − 2.

Suppose that m people remain, where m ≤ n/2 − 1. Recall that n is removed first and
then all odd numbers. If both n − 4 and n − 2 remain, then they occupy positions m − 1 and
m. To avoid removing either, n must not be congruent to m − 1 or m modulo m. That is,
we avoid removing person n − 2 if and only if n is not divisible by any number from 3 to
n/2 − 1, meaning that n/2 is prime. Similarly, we avoid removing person n − 4 if and only
if n − 1 is not divisible by any number from 3 to n/2 − 1, meaning that n + 1 is prime.
(c) We show that the smallest even number that does not equal W (n) for any n is 34. The
table below gives the smallest value of n yielding each value of W (n) less than 34, by
explicit computation.
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W (n) 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
n 3 5 7 16 11 13 50 17 19 76 23 56 248 29 31 424

We need only consider n > 34 and show that in all cases person 34 is removed at some
point in the process. We have observed that person n is removed in round 0, and all smaller
odd numbers are removed in round 1. Person 34 is then in position 17.

Since round r is defined as {m∶ ⌊(n − 1)/m⌋ = r}, the number of people remaining
when round r ends is min{m∶ ⌊(n − 1)/m⌋ = r} − 1. This number is ⌊(n − 1)/(r + 1)⌋.
Let ar+1 be the integer such that

⌊(n − 1)/(r + 1)⌋ = (n − ar+1)/(r + 1).

The first person removed in round r + 1 is in position ar+1 at the start of the round. For
each subsequent removal in round r + 1, the removed element pushes the round-starting
position of the next person removed up by r + 2. That is, the key additional observation is
that positions at the start of round r + 1 of the people removed in round r + 1 are

ar+1, ar+1 + r + 2, ar+1 + 2r + 4, . . . .

For even n, those removed in round 2 start the round in positions 2, 5, 8, 11, 14, 17, . . . .
Hence we may assume n is odd.

For odd n, those removed in round 2 start the round in positions 1, 4, 7, 10, 13, 16, . . . .
Thus after round 2, person 34 is in position 11.

When n ≡ 3 (mod 6), those removed in round 3 start the round in positions 3, 7, 11,
15, . . . , so we may forbid this case.

When n ∈ {1,5,7,11} (mod 12), getting (n − a3)/3 to be an integer requires a3 ∈
{1,2}. Those removed in round 3 start the round in positions 1, 5, 9, 13, . . . , or positions
2, 6, 10, 14, . . . . In both cases, person 34 ends round 3 in position 8.

When n ∈ {7,11} (mod 12), we have a4 = 3, and those starting round 4 in positions 3,
8, . . . are removed. Hence we may forbid this case.

When n ∈ {1,5} (mod 12), we have a4 = 1, and those starting round 4 in positions
1, 6, . . . are removed. Hence person 34 occupies position 6 at the end of round 4. Since
a5 ∈ {1,2,3,4,5}, round 5 removes exactly one person from the first five positions, so
person 34 ends round 5 in position 5.

When n ≡ 5 (mod 12), we have a6 = 5, so round 6 removes person 34.
Hence we may assume n ≡ 1 (mod 12). If also n ≥ 73, then at least 12 people remain at

the end of round 5. When the number of people remaining is in {12,6,4,3,2}, the person
occupying the first position at that time will be removed. This means that person 34, who
is already as early as position 5 when at least 12 people remain, is removed while a person
still remains.

To complete the proof, it remains only to check explicitly that W (n) ≠ 34 when n ∈
{37,49,61}.

Editorial comment. Reasoning like that for part (b) shows that W (n) = n − 1 if and only
if n is an odd prime. Round r actually eliminates one or more people if (n − 1)/(r + 1) <
⌊(n − 1)/r⌋. This holds for all r with r ≤ r∗, where r∗ = ⌊(

√
4n − 3 − 1)/2⌋. Thereafter, at

most one person is removed per round. As a result, the number of rounds in which people
are removed is r∗ + ⌊(n − 1)/(r∗ + 1)⌋.

Also solved by O. P. Lossers (Netherlands). Parts (b) and (c) also solved by K. Schilling and Eagle Problem
Solvers.

A Lobachevsky-type Formula

12351 [2022, 886]. Proposed by Seán Stewart, King Abdullah University of Science and
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Technology, Thuwal, Saudi Arabia. Evaluate

∫

∞

0

ln (cos2 x) sin3 x

x3 (1 + 2 cos2 x)
dx.

Solution by Mohammed Aassila, Strasbourg, France. Let I denote the requested integral.
We prove that

I = −
π

4
(ln 2 +

ln(1 +
√
3)

√
3

) .

We have

I =
1

2
∫

∞

−∞
ln (cos2 x) sin3 x

x3 (1 + 2 cos2 x)
dx =

1

2

∞
∑

k=−∞
∫

(k+1)π

kπ

ln (cos2 x) sin3 x

x3 (1 + 2 cos2 x)
dx

=
1

2

∞
∑

k=−∞
∫

π

0

(−1)k ln (cos2 x) sin3 x

(x + kπ)3 (1 + 2 cos2 x)
dx

=
1

2
∫

π

0
(
∞
∑

k=−∞

(−1)k

(x + kπ)3
)
ln (cos2 x) sin3 x

1 + 2 cos2 x
dx,

where the final interchange of integration and summation can be justified by the dominated
convergence theorem.

To evaluate the summation in the last formula, we start with the equation

∞
∑

k=−∞

(−1)k

x + kπ
=

1

sinx
.

(See I. S. Gradshteyn, I. M. Ryzhik (2007), Table of Integrals, Series, and Products, 7th
ed., Burlington, MA: Academic Press, equation 1.422.6.) Differentiating twice, we get

∞
∑

k=−∞

(−1)k

(x + kπ)3
=
1 + cos2 x

2 sin3 x
,

so this gives

I =
1

4
∫

π

0

(1 + cos2 x) ln (cos2 x)

1 + 2 cos2 x
dx = ∫

π/2

0

(1 + cos2 x) ln (cosx)

1 + 2 cos2 x
dx

=
1

2
∫

π/2

0
ln(cosx)dx +

1

2
∫

π/2

0

ln (cosx)

1 + 2 cos2 x
dx.

Both of these integrals are special cases of equation 4.385.3 in Gradshteyn and Ryzhik:

∫

π/2

0

ln(cosx)

b2 sin2 x + a2 cos2 x
dx =

π

2ab
ln(

b

a + b
)

for a, b > 0. Applying this with b = 1 and both a = 1 and a =
√
3 leads to the claimed

answer.

Editorial comment. As several solvers noted, the beginning of this argument proves a
Lobachevsky-type result: For any continuous function f(x) that is periodic with period
π,

∫

∞

−∞
sin3 x

x3
f(x)dx =

1

2
∫

π

0
(1 + cos2 x)f(x)dx.
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Also solved by T. Amdeberhan, A. Berkane (Algeria), P. Bracken, B. Bradie, C. Burnette, H. Chen (US),
B. E. Davis, M. L. Glasser, G. C. Greubel, N. Hodges (UK), W. Janous (Austria), L. Kempeneers & J. V. Cast-
eren (Belgium), O. Kouba (Syria), K. Nelson, M. Omarjee (France), A. Stadler (Switzerland), A. Stenger,
R. Stong, R. Tauraso (Italy), Y. Zhang (China), and the proposer.

CLASSICS

C25. Let w0,w1, . . . be the sequence of Fibonacci words, defined by w0 = 0, w1 = 1, and,
for n ≥ 2, wn = wn−2wn−1, the concatenation of wn−2 and wn−1. Thus the sequence begins
0,1,01,101,01101,10101101,0110110101101, . . . . Show that, for n ≥ 3, removing the
first two symbols from wn yields a palindrome.

The Tennis Ladder
C24. Due to Colin L. Mallows. Over the history of a certain tennis club, every player has
played at least one match against every other player. Matches are played one at a time, and
after each match a ranking of the players in the club is computed as follows. Starting with
the most recent match and working backwards through time, use the match results to build
up a partial order. Ignore any match that is inconsistent with more recent results. The final
result is guaranteed to be a linear order, since any incomparability between a pair of players
is resolved when a match between them is encountered. This linear order becomes the new
club ranking. Prove or disprove: A player cannot rise in the club ranking by intentionally
losing a match.
Solution. The assertion is false. Suppose that the results of the last nine matches among six
players are as follows, where we write a > b for a match where player a defeats player b
and we list the matches from oldest to most recent.

2>3, 6>1, 2>4, 1>2, 6>4, 4>5, 3>4, 3>6, 5>6

The ranking at this moment is 1 > 2 > 3 > 4 > 5 > 6, with player 3 in third place. However,
if player 3 loses the next match to player 5, the ranking becomes 5 > 3 > 6 > 1 > 2 > 4, with
player 3 in second place. So player 3 ranks higher after losing.

Editorial comment. The problem appeared as E3240 [1987, 996; 1989, 530] in this
MONTHLY. The problem statement has two interpretations. The strong form asks if a
player can rank higher immediately after throwing a match. The weak form asks if a player
can rank higher today by deciding to forfeit a match that took place in the past. No solu-
tion to the strong form of the problem was received from the MONTHLY readership other
than the proposer’s solution, which involved seven players. The example here involves six
players. This raises the question of whether there is an example with five players.

One can show that any time a player defeats a lower-ranked opponent (or loses to a
higher-ranked opponent), the ranking remains unchanged. However, reversing the outcome
of each match in the example above shows that defeating a higher-ranked opponent can
lower one’s overall ranking.

Say that a ranking algorithm respects duality if changing all wins to losses reverses the
resulting ranking. A familiar algorithm for ranking tennis club members is as follows: If
a lower-ranked player A defeats a higher-ranked player B, the new ranking is formed by
replacing B with A in the prior ranking and moving B and all the players ranked between A
and B down one spot. If a higher-ranked player defeats a lower-ranked player, the ranking
remains unchanged. One concern with this usual algorithm is that it fails to respect duality.
The algorithm of this problem is an alternative that does respect duality. The existence
of the example above, however, shows that this ranking system violates a certain kind of
monotonicity and suggests that it is an unreasonable system for actual use.
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