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Preface

Initial Comments

This volume has its origins in a contributed papers session, \Innovative Methods in Courses Beyond

Calculus," held at Mathfest 2001. This session was organized to discuss the following question:

What can be done to generate and then maintain student interest in the mathematics courses that

follow calculus?

Presentations were made by faculty who are addressing this question by doing \something different" in

these courses and having a good deal of success with what they are doing. At that time, it was suggested

to me that some of the papers presented at that session, when combined with a number of solicited outside

papers, might make a useful contribution to the MAA Notes series. The result is this volume, Innovative
Approaches to Undergraduate Mathematics Courses Beyond Calculus, which contains a wide range of
papers that encourage students to take an active role in the learning process and to stretch their learning

to ideas and concepts not presented in the classroom.

There is a real need for material of the type contained in this volume, a need that is reinforced by the

CBMS 2000 Survey. This survey indicates that the number of mathematics majors continues to decline,

even though enrollments in Calculus I and II and in the standard second year courses are increasing.

Furthermore, a growing number of students in the life and social sciences are seeking more mathematical

training in connection with their own disciplines. We should be teaching these students; they should not

end up getting this material in courses offered within their own departments with titles like \Mathematical

Methods in XX." A similar comment applies to students in the physical sciences and engineering. We

have to attract students in all these areas but we are not doing so, even though we are in the midst of an

era of increasing college enrollments.

If we are to obtain the results that we desire, we have to rethink what we are doing. We have to make

our courses more interesting and more attractive to students. But making courses more interesting is not

synonymous with hand waving or watering down content. The authors of the articles in this volume show

how we can do all this and still teach mathematics courses. These articles introduce new material, offer

a variety of approaches to a broad range of courses, and even bring students into contact with ongoing

research both in mathematics and in other disciplines. Furthermore, this exposure can take place as early as

the second semester of the sophomore year. The articles point out how students can work both individually

and in collaboration in order to stretch their mathematical boundaries. This stretching can be accomplished

in a variety of ways but the end result is always the same: students leave the course having done something

beyond the material covered in the classroom. This volume does have one ongoing theme: it is possible

to excite our students about mathematics. But to do so, it is not enough for students to sit and listen to

lectures about mathematics. They must actually DO mathematics.
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viii Innovative Approaches to Undergraduate Mathematics Courses Beyond Calculus

Some Specifics

The multifaceted nature of Innovative Approaches to Undergraduate Mathematics Courses Beyond Cal-
culus allows it to address a variety of needs. Faculty trying to revitalize their major offerings will find a
host of helpful ideas. Instructors seeking new ways to approach the courses they teach will find a number

of models that they can either adopt or adapt. Individuals looking for ideas to incorporate into a specific

course will find a wealth of suggestions both in the articles themselves and in their associated references.

And teachers who want to expose their students to current mathematical activity will find several avenues

to follow. The net result is a volume that offers a variety of options to meet a broad range of needs.

Each of the papers in this volume indicates how the approach discussed can be incorporated into dif-

ferent courses. Specific references are made to twenty-four different upper division mathematics courses,

with double references to six of them. These courses include abstract algebra, applied mathematics, bio-

statistics(two different courses), combinatorics, differential equations, discrete mathematics, game theory,

geometry, graph theory, group theory, history of mathematics, linear algebra, mathematical biology, module

theory, multivariable calculus, number theory, probability, real analysis, statistics, and topology, along with

three capstone courses. In addition, the interdisciplinary applications that are cited involve biology, com-

puter science, economics, engineering, physics, and the social sciences. The reference section of each paper

includes additional material. Each article discusses assessment and mentoring. Several of the articles, in

addition to the references, also include extensive bibliographies. In general, every effort has been made to

make the contents as transparent as possible.

The First Chapter

The first chapter of this volume contains five papers with approaches that are applicable in a variety of

courses:

1) Using Writing and Speaking to Enhance Mathematics Courses: In this paper, Nadine Myers of
Hamline University discusses both writing intensive and oral intensive methods that have been effective

in Linear Algebra, Modern Algebra, and Modern Geometry, as well as in structuring a capstone course

(Topics in Advanced Mathematics). This approach requires students to write and present proofs frequently

and often involves student research on an advanced topic coupled with written and oral presentations. An

extensive set of guidelines is included to assist in implementing such an approach.

2) Enhancing the Curriculum using Readings, Writing, and Creative Projects: A variety of student-
oriented activities can be used to enhance student learning in advanced courses. In this paper, Agnes Rash

of St. Joseph's University indicates a number of methods that have been used successfully in Discrete

Structures, Group Theory, Number Theory, and Probability and Statistics, as well as in a capstone course

involving student research. This article includes a host of specific examples and several extensive reading

lists. There is a strong emphasis on student presentations.

3) How to Develop an ILAP: The applications of mathematics, while powerful motivators in and of
themselves, can have even more impact if they are developed in conjunction with departments that use

mathematics within their own disciplines. In this article, Michael Huber and Joseph Myers, both of the

United States Military Academy, provide a detailed description of how to work with colleagues in other

departments to construct ILAP's(Interdisciplinary Lively Application Projects). The article includes details

on how to select a suitable topic, how to work in conjunction with a partner department, what material

to include in the student handout, mentoring students during the project, and how to organize student

presentations of the results. It also provides several examples of ILAP's and contains references to many

others.



Preface ix

4) The Role of the History of Mathematics in Courses beyond Calculus: The history of mathematics
can provide a good deal of content motivation if it is integrated seamlessly into the course; it cannot

appear to be just thrown in. This article, by Herbert Kasube of Bradley University, discusses how such

an integration can be accomplished in a variety of courses beyond Calculus, including Abstract Algebra,

Combinatorics, Graph Theory, and Number Theory. This paper also provides an extensive bibliography of

source material.

5) A Proofs Course that Addresses Student Transition to Advanced Applied Mathematics Courses: This
paper, by Michael Jones and Arup Mukherjee of Montclair State University, is unique in that it describes

a proofs course directed toward a specific curriculum. While emphasizing the construction of proofs,

the approach described also encourages students to go through a process that moves from exploration to

conjecture to proof in a specific curricular area. It often uses technology to motivate or consolidate ideas.

The Second Chapter

The second chapter of this volume contains five articles that, while more course specific, also contain

approaches that are adaptable in other courses.

6) Wrestling with Finite Groups: Abstract Algebra need not be Passive Sport: Abstract Algebra is,
by its nature, abstract. But it does not have to be approached as a list of definitions and theorems that

need to be verified. In this paper, Jason Douma of the University of Sioux Falls discusses how an abstract

algebra course can be structured around an open-ended research project. The project is not an application

of material covered in class but rather a basis for motivating the actual course content. The paper provides

all the details needed to implement such an approach, including information on organization, classroom

activity, and assessment.

7) Making the Epsilons Matter: Students all too often view an introductory real analysis course as a
mechanism that provides the theoretical foundation for calculus results that they already have accepted

intuitively. In this paper, Stephen Abbott of Middlebury College describes how an introductory real analysis

course can be used to challenge and sharpen intuition as opposed to merely verifying it. He also shows how

these outcomes can be reached by a shift of emphasis and not necessarily content, leaving the students with

a thorough grounding in the basic concepts of continuity, differentiability, integrability, and convergence.

8) Innovative Possibilities for Undergraduate Topology: In this paper, Samuel Smith of St. Joseph's
University approaches the undergraduate course in topology as one intended for a broad range of majors

and not just those planning on graduate study. To achieve this outcome, the author describes in detail how

to structure a course in which an initial geometric approach can be used to motivate the axiomatic structure

that characterizes topology. A major goal is to maximize the number of ideas that the students discover

for themselves. The possibility of using topology as a capstone course also is explored.

9) A Project-Based Geometry Course: Geometry is an axiomatic subject but these axioms need not
always be presented in lecture mode. In this paper, Jeff Connor and Barbara Grover, both of Ohio University,

discuss a geometry course in which the students develop their own axiom systems, using technology when

appropriate. The students receive early experience with both Euclidean and non-Euclidean geometries and

also obtain the intellectual tools that they will need to learn any new and unfamiliar mathematics.

10) Discovering Abstract Algebra: A Constructivist Approach to Module Theory: Students in upper
division mathematics courses can profit from guided discovery, an approach that encourages students to

construct their own knowledge and choose their own course of study, while retaining subtle guidance on

the part of the teacher to generate definitions, examples, and eventually theorems. In this article, Jill Dietz

of St. Olaf's College discusses how to use such an approach in a course on Module Theory that is taught

as a follow-up to a first course in Abstract Algebra. It begins with the initial question: \What happens if

we replace the vector space axiom that requires an action of a field on an additive abelian group with the
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new requirement that there is instead a ring action on an additive abelian group?" The course then uses

guided discovery to generate results in what the students eventually find out is module theory.

The Third Chapter

The third chapter of this volume also contains five papers. The first two describe courses relating mathe-

matics and biology, while the third and fourth papers discuss voting theory. The last paper in this chapter

discusses a course in Classical Applied Mathematics in which technology is an integral component.

11) The Importance of Projects in Applied Statistics Courses: Advanced Statistics courses, particularly
those directed toward biology students, no longer are places where formulas are emphasized and data

summarized. The focus now is, or should be, on the importance of statistics in providing legitimate

answers to the questions posed by researchers. In this paper, Timothy O'Brien of Loyola University

Chicago discusses how projects that not only study the assumptions and limitations inherent in research

studies but also require student to address statistical topics that are not a part of the standard curriculum

greatly expand student learning. These projects may require the analysis of a previously unstudied data set

or a critique of original research articles from refereed journals. They also must involve or require the use

of techniques that are beyond those covered in the formal classroom presentation.

12) Mathematical Biology Taught to a Mixed Audience at the Sophomore Level: Most Mathematical
Biology courses are either modeling courses designed for upper division mathematics majors or lower level

courses, often with minimal mathematical prerequisites, for biology majors. In this article, Janet Andersen

of Hope College describes a team taught course in Mathematical Biology that serves both mathematics and

biology majors. The prerequisite for the mathematics majors is a course in Linear Algebra and Differential

Equations while the biology majors are required to have one semester in Calculus plus a sophomore level

course on Ecology and Evolutionary Biology. The course is based on biology research papers that use matrix

analysis or differential equations in their development. Class requirements include both collaborative work

and classroom presentations.

13) A Geometric Approach to Voting Theory for MathematicsMajors: Voting theory can be incorporated
into a variety of upper division mathematics courses, which can allow students to obtain some insight

into ongoing mathematical research and its outcomes. In this article, Tommy Ratliff of Wheaton College

discusses how this can be done in a course that also covers game theory. With discrete mathematics as

a prerequisite, this course delves into the geometric framework that underlies some of the recent results

obtained in voting theory. One outcome is to help students become better judges of the choice procedures

available to them in their everyday lives.

14) Integrating Combinatorics, Geometry, and Probability through the Shapley-Shubik Power Index:
Voting theory is a rapidly developing area of mathematics with a broad range of applications both inside

and outside of mathematics. This paper, by Matthew Haines of Augsburg College and Michael Jones of

Montclair State University, serves as a primer for instructors who wish to introduce the elements of voting

theory into their courses. This article also discusses how its contents can be applied in several upper

division courses.

15) An Innovative Approach to Post-Calculus Classical Applied Math: Classical Applied Mathematics
typically is considered to be a formal development of the theorems and problem-solving techniques of

applied analysis. In this article, Robert Lopez, formerly of Rose-Hulman Institute of Technology and now

with Maplesoft, indicates why a computer algebra system should be the working tool for teaching, learning,

and doing classical applied mathematics. The result of such an approach is a richer, more efficient, and

more effective learning system. One key point is that technology must be an integral part of the course

that is available for all parts of the course, including examinations. Two in-depth examples are provided

to illustrate the effectiveness of this approach.
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Conclusion

Innovative Approaches to Undergraduate Mathematics Courses Beyond Calculus is intended to serve as
a starting point both for those who plan to adopt or adapt the approaches it discusses and for those who

plan to develop their own ideas. This volume contains fifteen papers that provide useful information on

alternative methods that are being used with great success in the courses following calculus. These papers

not only present new concepts and related applications that can be introduced into these courses but in

several cases also bring students into contact with ongoing research. In all cases, the material is presented

in detail. When the presentation is course specific, techniques for using the approach in other courses also

are discussed. Much of the heavy lifting already has been done and all that remains is for instructors to

adapt the suggestions to their own individual settings.

Hopefully, this volume will provide a body of information that will prove helpful to instructors teaching

the courses that follow calculus. At this time, there does not appear to be anything in print that discusses

how to generate and maintain student interest in the courses beyond calculus. While Innovative Approaches
to Undergraduate Mathematics Courses Beyond Calculusmay well be the first of its kind, it most certainly
will not be the last. The need to make our major programs more attractive and to draw students outside

our discipline into our courses will see to that.
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Introduction

The first chapter contains five papers with ideas, approaches, and applications that range over several

different areas. The articles by Nadine Myers of Hamline University and Agnes Rash of St. Joseph's

University show how oral presentations, projects, readings, and writing can be used creatively to enhance

student learning and interest in courses like Discrete Mathematics, Linear Algebra, Modern Algebra,

Number Theory, Probability, and Statistics. Both articles emphasize student cooperation and participation

and both contain extensive information on implementation and mentoring.

Mathematics is used extensively in other disciplines and the article by Michael Huber and Joseph

Myers of the United States Military Academy describes how to take advantage of this largely untapped

resource. They describe in detail how to develop ILAP's (Interdisciplinary Lively Application Projects)

by working in conjunction with faculty in science, engineering, and the social sciences. Once a project is

prepared, it is assigned to students for group work; some projects are usable as early as the first semester of

the sophomore year. While several ILAP's are described and the bibliography contains extensive references

to others, the major goal of the article is to provide extensive information on how to design and implement

an ILAP.

Many upper division mathematics courses spend little time indicating how the history of mathematics

has influenced the course content. In his paper, Herbert Kasube of Bradley University notes how an

understanding of the history of a subject, when integrated into the course, can motivate students to pursue

the subject matter. In addition to indicating how this can be accomplished in several different upper division

courses, this article also contains an extensive list of source material.

Transition courses that introduce students to proofs were quite popular in the past. They fell out of

favor for a while when departments began to use introductory courses in number theory, geometry, or,

especially, linear algebra, in their place. Transition courses are now making a comeback as departments

once again discover that students who have completed a calculus sequence often are not prepared for

what they encounter in introductory algebra or analysis courses. The article by Michael Jones and Arup

Mukherjee, both of Montclair State University, surveys the various directions that such courses can take.

It then focuses on a unique approach to a transition course, one that requires students to use exploration

and technology to conjecture and then prove a variety of results in applied mathematics.

The five articles in Chapter 1 describe approaches that can be used in a variety of settings. They are

unified around the theme of encouraging students to look beyond the course material to find something

more, a theme that remains constant throughout this volume. They use everything from the history of

mathematics to modern technology to motivate student learning and insight. The goal of these articles,

along with those in Chapters 2 and 3, is to generate student interest and appreciation of mathematics and

its applications.
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1.1
Using Writing and Speaking to
Enhance Mathematics Courses

Nadine C. Myers

Hamline University

1.1.1 Introduction

A college wide curriculum change in 1986 prompted my adoption of nontraditional methods in mathematics

courses. The curriculum requires students to take one writing intensive course per year and two oral

intensive courses in four years. Good practice suggests that students enroll in at least one class of each

type in their major field. Given this need for writing intensive or oral intensive mathematics courses, I first

developed a writing intensive and oral intensive Modern Geometry course [11]. Later I developed an oral

intensive Modern Algebra course [12] and have used similar techniques in Linear Algebra and a capstone

course, Topics in Advanced Mathematics. In all these courses, I have two main goals: 1) Make the class

time as discussion oriented as possible, and 2) Require students to write and present proofs frequently.

In Modern Geometry and in Topics, students also must research an appropriate topic and then write and

present a paper on it. Using these methods, I observed an increase in both student satisfaction and success.

Following a brief description of writing and oral intensive courses, this paper will describe my methods.

A writing intensive course must provide students with instruction on appropriate writing in the disci-

pline and require them to complete multiple writing assignments. Faculty must provide regular feedback

and allow students to reflect on and revise their writing. A final requirement, which has in my experience

proved to be a consequence of the others, is that significant learning must occur as a result of students'

writing activities. Analogous requirements pertain to the oral intensive designation. I interpret writing in

the discipline for mathematics to mean both exposition and proof writing, including appropriate use of

symbols and technical terms. Oral intensive mathematics courses also require multiple opportunities for

presentation, regular feedback, and instruction in oral skills such as choosing cogent, precise language,

and pronouncing symbols correctly.

1.1.2 Teaching Students to Write Mathematically

To facilitate the writing intensive aspect of Modern Geometry, I introduce Reader Expectation Theory (RET)

early in the term. Briefly, this theory helps students to write in such a way that individual components of a

5
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given document are located where the reader expects to find them, thereby minimizing structural confusion

and maximizing substantive clarity. RET encourages writers to use the active voice. Students are taught to

ask: What is the action in this sentence? Is that action expressed directly and clearly as a verb? Who or

what is the agent of that action? Is that agent who or what the sentence is really about? What is my point
in this sentence? Is it immediately before the period, i.e., in the stress position? How does this sentence
connect with the previous sentence and with the next? Is this sentence in the appropriate place relative to

its importance to the topic of the paragraph? How does this paragraph fit into the structure of the whole

document? (See [7], and [15] for information on RET and clarity.)

RET gives students a clear format for editing their papers. It makes their writing more intentional by

requiring them to think of what they want the reader to take away from each sentence, from each paragraph,

and from the entire document. Beyond helping students write clear expository papers, I believe that RET

helps students write proofs. To write an effective proof, a student should ask: What is happening in this

line of the proof? What is the agent or cause of that action? Has that cause been sufficiently exposed?

What is my purpose in this line? What is my point in the entire proof? Once I am clear on the point

sentence, and have located it as the final line of the proof (stress position), how shall I organize the steps

between the hypotheses and the conclusion?

Teaching Students to Write Proofs

In my courses I devote some time to teaching students how to find and write proofs. Of course some

students learn by imitating the professor, and most of them have taken a transition course in sets, logic

and proof techniques. But even the best students benefit by explicit attention to proof writing, which

proceeds generally as follows. First I ask students to identify the if-then form of the proposition. Once

they are clear on the hypothesis and conclusion, I have them write the conclusion at the bottom of the

page as the final statement of the proof. Then they write the hypotheses at the top of the page. Also at the

top they write an interpretation of the hypotheses: What do they mean? What are some consequences or

implications of the hypotheses? At the bottom they write an interpretation of the conclusion: What does it

mean? (Since students only gradually recognize the value of precise definitions, I want them to have every

relevant definition clearly written on one end of the paper or the other.) Then I ask: What are some ways

of arriving at the conclusion, given the hypotheses? Are there any relevant theorems? Then they try to

make connections. Once they perceive the main line of argument, they must fill in the middle of the page

one step at a time, justifying each step by one of the six classical reasons: By hypothesis, by definition,

by axiom, by theorem, by rule of logic, by a previous step. They may also use "by properties of numbers"

to justify algebraic or numerical manipulation. Although students initially complain about the need for

justification, they soon recognize that the discipline of supplying reasons helps to clarify their thinking.

Writing and Speaking Activities

In Modern Algebra, Topics, and Modern Geometry I give multiple proof writing and presentation assign-

ments. The three classes are enough alike that I will limit discussion in this paper to the Modern Algebra

course. Similar methods are also used, though less extensively, in Linear Algebra. I use collaborative

proof writing and presentation partly as a means of implementing oral intensive requirements but mostly

because they are an effective means for teaching the material. Students are asked to work in groups for

both writing and presenting proofs. They may also work together on homework assignments. Most groups

recognize that they produce work that is significantly better than any individual could do. That students

regard group problem solving as beneficial is noted in the student evaluation comments listed below. That

groups provide an effective way to learn is discussed in [5], [6], [11], [14], and elsewhere.
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In Modern Algebra, eight class days are reserved as presentation days. Class time during the remaining

days is used for informal lecture, questions, and group discussion. As the term progresses, lecture time

diminishes as questions and group discussion time grow. Group discussion can take many forms. Sometimes

we analyze proofs in the text. I guide students through the author's proof, asking them to identify how the

hypotheses are used, asking them to supply reasons for steps that the author has not explicitly justified,

or asking them to identify the conclusion and its connection to what the author actually stated in the final

line of the proof. In the latter case, usually for a proof by contraposition, I find that some students can

verify each step of the proof yet remain unable to explain why or how those steps prove the theorem.

Other group discussions are for answering student questions. If one student is stuck on a problem, others

are asked to suggest a way to resolve the immediate difficulty or to suggest an alternative approach.

Finally, discussion time may be used for solving problems posed by the instructor. I might ask why a given

theorem's conclusion is what it is, and ask students what prevents the conclusion from being stronger. For

instance, why is a given factor ring only a commutative ring with identity? What prevents it from being

an integral domain? How might the hypotheses be changed to bring about the stronger conclusion?

I regard group problem solving outside of class as a crucial speaking activity. As we proceed through

the textbook, I assign problems daily. Some are for presentation, with the remainder to be written up and

handed in. Almost all require proofs. Students work with their group to solve the problems and may consult

with the instructor as needed; they even can submit trial proofs for feedback. For final submission, every

student must write up every problem. Occasionally, problems are graded on a group basis. That is, I grade

problem 1 on one student's paper (chosen randomly), problem 2 on the next, and so forth, advancing group

members' papers cyclically after each problem. Thus a given problem is graded only once per group, with

all members receiving the same score.

Assigned problems that are not submitted for grading are used on presentation days. At the beginning

of the class period on such days, each group lists the problems it is able to do. A problem cannot be listed

unless every group member is capable of presenting its solution. Groups are expected to master at least

eighty per cent of the assigned problems. Problems range from easy to quite difficult in my judgment, the

majority being about medium difficulty. Each group presents to the class at least one problem from their

list. Early in the term students in non-presenting groups are asked to evaluate each proof using the form

in Appendix A. The form relates to the proof writing technique discussed above. Non-presenting students

are graded on their ability to recognize that the presenter has or has not followed the suggested form. As

the term progresses, the evaluation form is abandoned in favor of proof critiques by non-presenters.

To accommodate students' growing capabilities during the term, presentation requirements also grow.

Early on, I invite each group to select its best proof for presentation, subject only to avoiding overlap among

the groups. One member of each group volunteers to write the solution on the board, coached by others

in the group. To save time, there are multiple groups at the blackboard, writing solutions simultaneously.

(Or multiple groups writing their proofs on transparencies for the overhead projector.) Once the solutions

are all written, a different representative explains her or his group's solution to the class. All members

of a presenting group are encouraged to monitor the written solution and explanation to ensure accurate

transmission of the group's work.

Once a solution has been explained to the presenting group's satisfaction, the remaining class members

are asked for their evaluation: Is the proof valid? Are the hypotheses and conclusion stated and interpreted

correctly? Is there a logical progression from hypotheses to conclusion? Has the group used correct logic,

terminology, and symbols? Is the proof concise? Could it be better organized? Is there an alternate approach?

Why might someone choose one approach over another? As the term advances and students become more

comfortable with proofs and presentations, selection of problems and presenters becomes more focused.

By the third or fourth presentation day, I select a problem for each group and an individual to present the

problem. Group members may still coach the presenter as she or he writes the solution on the board and
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may respond to audience questions if the designated presenter is stymied. Toward the end of the term,

group coaching is expected to diminish, although group members are still given the first opportunity to

correct any mistakes in a proof. For the final presentation day, students solve problems with their groups,

but each individual submits the three most difficult (in their judgment) problems that she or he is willing to

present. The instructor assigns one problem per student for individual presentations. If there is insufficient

time for all students to make a final presentation to the class, the remaining presenters schedule individual

appointments with the instructor.

1.1.3 Grading

Since Modern Algebra is an oral intensive course, students are graded on their participation in class

discussion. The general grade guidelines given in Appendix B are used. During class discussion, one must

prevent the more aggressive students from dominating and encourage timid students to contribute. In my

experience this has not been a real problem. If it were, I would follow a physics colleague's advice:

Simply let the class know that everyone can get an A in discussion for the day, but no one gets an A

unless everyone's voice has been heard in a meaningful way.

In the algebra course, final grades are based on performance in four areas: Presentations, participation,

problem sets, and examinations. Relative weights are:

Presentations 150

Class participation 100

Problem sets 200

Hour examinations (2) 200

Final Examination 150

On presentation days, every student gets two grades: a presentation grade, and an observer grade.

Presentation grades are group grades, based jointly on the number of problems that the group can do,

together with a grade on the quality of the presentation. A presentation is graded A, B, or C according to

the proof's correctness and quality. I have never seen a presentation deserving a D or F. Groups work hard

to get all members up to speed on the problems. The grades are then scaled according to the proportion of

assigned problems done by the group. For example, if a group scored an A on a given problem presentation,

but could do only sixty per cent of the assigned problems, their presentation grade for that day would be

B. Forty per cent or fewer would result in a C or D. Every member of the group gets the same presentation

grade. An observer for a particular presentation is a class member who is not part of the presenting group.

Observers critique a proof as described above and are graded according to the guidelines in Appendix B.

1.1.4 Conclusions

Below are some reactions by students and myself.

Instructor's Observations

The Modern Algebra course described here took some time to develop and is described in [12]. The course

as it now exists works very well. In twenty years of teaching, I have not seen students capable of handling

algebraic structures like factor rings and field extensions with such confidence nor proofs written with

such clarity. Although there may be any number of reasons for this occurrence, some are clearly related to

the oral intensive format. Some reasons for success are the usual benefits of group work: shared insights,
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opportunities to ask questions as they arise during problem solving, peer review of preliminary work,

and motivation to persevere for the sake of the group. Judging from the camaraderie and good-natured

banter that occurred in class, especially on presentation days, students enjoy as well as benefit from group

problem solving and presentation.

Another reason for success is that eight presentation days along with weekly written problem sets

provide students with a constant incentive to work. Students need to discuss algebra frequently within

their groups in order to keep up. As the course evolved it became clear that proof presentations and the

associated critiques contribute significantly to students' success. As indicated by their course evaluations,

students themselves recognize that presenting work to the class helps them learn. If a student produces

an invalid argument, suggestions from other students almost always leads to a solid proof. While students

are initially reluctant to criticize other students' work, encouragement to make a proof even better seemed

to draw out a few more comments on each successive presentation. Also, I make a point of cautioning

students that failure to identify flaws in another student's proof will be understood as their belief in its

validity.

Students know that their participation score will be affected by their ability to find flaws as well as

their willingness to offer clearer language, better notation, or alternate methods. Proof critiques improve

dramatically as the term progresses, and there are many excellent discussions of proofs. As students offer

suggestions to other students, it quickly becomes clear to everyone that they all can write good proofs. In

one class, two students who had initially dubbed themselves hopeless at proving things found that they

were able to construct a fair argument by the end of the term.

Student Reactions

Most students respond well to the course. Below are a few comments taken from anonymous student course

evaluations. All are responses to the question, \What features of this course most effectively helped you

learn?"

If I presented a problem I really knew how to do it by the time I was done.

Math is usually pretty lecture intensive, but I appreciated more active learning through the presentations.

I . . . also enjoy the group collaboration on problem sets.

Presentations [helped me learn] | good way to clarify the thought process.

Working in a group was most beneficial for me.

The group sessions helped me learn and I depended on this to help me understand.

A number of students expressed specific satisfaction with the course.

I have enjoyed [this course].

We are encouraged to ask questions and to participate in the learning process.

Very interesting.

Stirs such enthusiasm.

Very well planned and taught.

The few negative comments centered on the necessity for students to attend class regularly (a require-

ment for their grades for class discussion). A few students commented negatively on the workload. One

student said that the large number of assigned problems helped him learn, but that \more problems should

be voluntary, thus making the student more responsible for wanting to learn more by doing more."
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Appendix A

Author's note: Students are initially encouraged to write proofs by carefully considering four questions:

What are the hypotheses?What do the hypotheses mean? What is the conclusion? What does the conclusion

mean? Then they are asked to supply logical connections between the hypotheses and conclusion. Proof

presentations are scored by students according to the presence or absence of these items.

Evaluation Form for Presentations

Evaluator's Name:

Use the following scoring for the first four items:

0 = item missing

1 = item partially present

2 = item complete

For the Connection item value the item as appropriate between 0 and 4:

0 = proof makes no connection between hypothesis and conclusion

4 = complete logical connection made

Presenter or Hypothesis Hypothesis Conclusion Conclusion Connection

group name stated explained stated explained logically made

1.

2.

etc.

Appendix B

Author's note: A copy of the following statement is distributed at the beginning of the term.

Grading Class Participation

Class Participation is crucial to success in this class. Participation means showing up for class having

completed the assigned reading, asking questions about anything in the reading or assignment that seems

unclear, offering insights, and listening to the comments, questions or insights of others. It also involves

proof critiques on presentation days.

Evaluation of participation falls into the following categories:

A-range

Regularly makes helpful, relevant contributions to discussion.

Regularly asks questions clarifying questions about text material or problems.

Frequently offers suggestions or insights that advance an argument or allow others to understand the

material better.

B-range

Occasionally makes helpful, relevant contributions to discussion.

Asks occasional questions.

Occasionally offers suggestions or insights that advance an argument or allow others to understand the

material better.
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C-range

Attends class regularly and actively pays attention to discussion.

Occasionally contributes ideas, answers, or suggestions for improvement.

D or F-range

Does not attend regularly.

Does not pay attention to discussion.

Seldom contributes to discussion.

Modifiers

Missing more than three classes will lower your grade.

Being totally distracted or inattentive will lower your grade.

Making contributions to discussion means:

Asking questions about things in the text, or things said in class, which are unclear or confusing.

Offering answers to questions asked by others in class.

Making claims or observations about the ideas being discussed.

Offering alternative arguments or ideas.

Offering support, criticism, modification, or clarification for proofs being discussed. This includes the

appropriate use of mathematical language and symbols.

Asking questions about or pointing out possible flaws in presented proofs.

Notice that the sheer number of your contributions does nothing to improve your grade. Contributions must

be 1) relevant and 2) helpful. A genuine question always counts as relevant and helpful.

Relevant contributions show that you are engaging with the concepts being discussed at the time, and

that you are well prepared for class.

Helpful contributions advance or improve the discussion by bringing in new ideas or insights.

Helpful contributions also let us understand the ideas or arguments being put forward.

Relevant contributions point out alternate approaches to the problem or concept being discussed.
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1.2
Enhancing the Curriculum Using

Reading, Writing, and Creative Projects

Agnes Rash

St. Joseph's University

1.2.1 Introduction

Theoretical upper division mathematics courses may be interesting in and of themselves, but making them

lively can be challenging. This article discusses the use of readings, student projects, and other creative

endeavors to enhance understanding and make these courses come alive. A large part of the success of

these extensions is providing the opportunity for students to discuss and explain what they have learned or

accomplished during the course. Students react enthusiastically to the readings and projects. Upper division

courses can become a natural place to introduce modern applications of mathematics. Specific examples of

student research presented here are primarily drawn from number theory, discrete structures, group theory,

and probability and statistics. Samples of suggested reading lists are provided. This article provides two

examples of how the suggestions come together to form a cohesive course in the sections entitled Putting

It All Together. Finally, the culmination of a project deserves special attention. At the end of the article

is a section on Showcasing Student Accomplishments that presents rewarding opportunities for students

to distinguish themselves.

As mathematics departments become more involved with capstone courses for their students, the

information in this paper may be helpful in designing a capstone experience for your students. In this

seminar each student, under the guidance of a faculty mentor, undertakes an independent project culminating

in a presentation in the department. The topic may be suggested by the student or chosen by the mentor.

Often the topic is an extension of material covered in an upper division mathematics course or is an

interdisciplinary application of mathematical content. The venue for presentation depends on departmental

preferences and varies from one institution to another. Some suggestions in this direction are given in the

section on Showcasing Student Accomplishments.

1.2.2 Reading about the Subject

For any upper division course, consider developing a reading list. For many students, their experiences in

reading mathematics have been limited to reading the textbook or, even worse, reading just the definitions,

13



14 1. Papers Covering Several Courses

theorems, and a few examples in the text. Encourage students to select readings of interest and to submit

written critiques of the articles. These articles can be an extension of a topic discussed in the course,

an application of a result to another field, or an historical note about the development of the concept.

Students can select readings that are appropriate to their own level of development or the instructor

may make particular suggestions about topics for individuals. While a general reading list is helpful, a

specific reading list for each course is more beneficial. Five journals that regularly carry articles suitable

for undergraduate students to read are: Math Horizons, Pi Mu Epsilon Journal, Chance, Stats and The
Journal of Recreational Mathematics. Construct a reading list that contains a range of articles to suit
the varied interests of students. A reading list for a course is a work in progress. Each year, new and

interesting articles appear, while older articles may need to be deleted from the list. For example, before

Andrew Wiles proved Fermat's conjecture there were many articles referring to the following theorem as

unproven: xn C yn D zn has no solution for n greater than 2. And vary the level of difficulty from easy

(to be read by everyone) to demanding. Stretching the bright students beyond the content of the course

can challenge them to learn concepts on their own.

After a student has read an article, s/he should submit a report to the instructor. This report can be a

synopsis of the article, a critique of the article, or any written document that the instructor believes would

provide an accurate representation of the student's comprehension of and interest in the material. These

critiques often are helpful to the instructor. The written content can be an indicator of the comprehension

of the ideas presented. Sometimes the instructor can ascertain a student's interests by reading his or her

summary of the reading. The instructor may then use this information to guide that student into a suitable

topic for research.

1.2.3 Student Projects

Projects can serve several purposes. They offer the instructor the opportunity to broaden the range of theory

or applications . Projects can provide students with challenging problems involving concepts beyond the

scope of the lectures. Designing and solving problems creates an environment similar to the one that they

may encounter in a real world setting after graduating from college. Real world problems involve first

reading about the area, deciphering the information into a manageable form, finding a solution to the

problem, and then explaining the findings in a written or oral presentation. The use of projects, either

individual or group, improves the ability of students to communicate mathematical concepts to their peers.

Students differ in their interests and abilities, so finding suitable problems can be challenging.

When determining suitable topics for students, it usually is desirable to interview the students to de-

termine their interests. Discuss possible projects that match these interests. Here is an opportunity to be

inventive. Frequently students do not see that a mathematical model may be appropriate to a particular situ-

ation. Music or sports are common areas of student interest and both areas lend themselves to mathematical

models. For example, consider the process, or art, of juggling, which involves keeping multiple objects in

the air at the same time. Various juggling patterns can be modeled using linear algebra (eigenvalues and

Markov chains) and graph theory. Students will be able to find literature on the topic. You may suggest

some relevant readings to help students focus on a problem.

Give each student the opportunity to think about your conversation and to read about the problem

before scheduling another meeting. If you cannot determine a relationship between the student's interest

and a suitable mathematical problem, consult your colleagues. Many creative ideas may emerge that you

can share with your student. Try to foster creative thinking in each student. There are no bad ideas when

students are trying to find a topic. Even though some topics are more difficult and perhaps beyond the

scope of the student's knowledge or ability, the student's interests still are valid.
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During a second interview, the faculty member and the student can decide on the project to be com-

pleted. The process of mentoring a student involves a commitment of both parties to frequent discussions

about progress on the work. Students need encouragement and occasionally a little nudge to stay focused.

The mentor's task is to encourage the student, perhaps critique the written work, but not to solve the prob-

lem or write the results. Constructive suggestions often are necessary and can be provided in a positive

manner. Be patient, but always keep the deadline in view. The problem may have to be restricted (via

simplifying assumptions or restricting of the scope of the problem) in order for the student to complete

the project in a reasonable amount of time. Some excellent project ideas were suggested during the ses-

sion \Mathematical Modeling In and Out of the Classroom" at the AMS/MAA joint meeting in January

2003 [4].

In a course on problem solving or topics in mathematics, students can study elementary Euler circuits

and Hamilton circuits. Finding the shortest path from one campus building to another is a possible group

undertaking. The shortest path can be defined in terms of distance traveled or shortest time needed to

traverse the route. An explanation of continuity and its importance in the real world, the problems presented

by discontinuities, is a project that requires only a background in calculus. Projects from abstract algebra

include computing all groups of a specific order n. Students also may explore why A5; A6; : : : are simple

groups and why mathematicians are interested in them. Depending on the emphasis of the course, many

other opportunities exist to explore concepts. In group theory, for example, students can also explain how

to construct the semidirect product of two finite groups, G and H , using a homomorphism from H into

Aut.G/.

The benefits to the students are manifold. Students have the opportunity to study a topic that interests

them. They develop independent research skills or the ability to work in a group, depending upon the

mentor's focus. By explaining their findings, students improve their ability to communicate mathematical

ideas. At the completion of the undertaking, students have a sense of accomplishment. Even the weaker

students feel that they have done something and take pride in their work. There are many opportunities to

share the results of the student projects, either in class or outside of class.

Let us now consider examples of student accomplishments that are the result of readings, writings, and

projects from two different upper division courses.

Putting it all Together: An Example from a Number Theory Course

An elementary course on Number Theory typically covers standard topics such as the number of divisors of

an integer, the sum of the divisors of an integer, Euler'sˆ function, congruences, . . . . However, specialized

topics that are not covered in the lectures can become a source of reading material and projects for students.

As with all textbooks, texts in the elementary theory of numbers generally contain suggested readings.

The list is compiled before the book is produced, so the references are often dated. Look for current

articles for students to read in the journals listed above. A sample collection of readings for an elementary

course (freshman or sophomore level) in Number Theory is provided below. For an example of a readily

accessible reading, consider \September 11th Did Not Change Cryptography Policy" by Whitfield Diffie

and Susan Landau. (See below.) An example of a more sophisticated reading would be \The Mobius

Inversion Formula" in Vanden Eynden's Elementary Number Theory [5].

E. Berkovich, \A Diophantine Equation," Pi Mu Epsilon Journal 10 (1995) 104{10.
D. A. Cox, \Introduction to Fermat's Last Theorem," The American Mathematical Monthly 101 (1994)

3{14.

M. Dalezman, \From 30 to 60 is Not Twice as Hard," Mathematics Magazine 73 (2000) 151{53.
K. Devlin, \World's Largest Prime," Focus 77 (December, 1997) 1.
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W. Diffie, and S. Landau, \September 11th Did Not Change Cryptography Policy," Notices of the
American Mathematical Society 49 (2002) 448{463.

C. W. Dodge, \What is a Proof?" Pi Mu Epsilon Journal 10 (1998) 725{727.
J. S. Gallian, \The Mathematics of Identification Numbers," The College Mathematics Journal 22

(1991) 194{202.

J. Goldman, The Queen of Mathematics: A Historically Motivated Guide to Number Theory, A. K.
Peters, Wellesley, Mass, 1998.

R. K. Guy, \Nothing's New in Number Theory?" The American Mathematical Monthly 105 (1998)
951{954.

B. Hayes, \The Magic Words are Squeamish Ossifrage," American Scientist, 82 (1994) 312{316.
L. Lamport, \How to Write a Proof," The American Mathematical Monthly 102 (1995) 600{608.
P. Plummer, \Divisibility tests for primes greater than 5," Pi Mu Epsilon Journal 10 (1995) 96{98.
E. Snapper, \What is Mathematics?" American Mathematical Monthly, 86 (1979) 551{557.
H. Waldman, \Tom Lehrer, Mathematician and Musician," Math Horizons 5 (1997) 13{15.

Topics in Number Theory are readily available for students to research. Examples include continued

fractions, abstract multiplicative functions, the M�obius Inversion Formula, Pell's Equation, or applications

such as check digits and cryptography. Each of these topics is suitable for a group project. Here are two

examples of students' interests from the author's experience.

1. One student's fascination with magic squares led to the study of problems in nonlinear Diophantine

equations.

2. Another project, entitled \Generalizations of the Jailer Problem" was the product of two students'

efforts working together. Here is their description of the project:

We solved two generalizations of a famous problem. The original problem is this. All the cells in a

long cell-block are locked. A first jailer turns every lock, so that they are now all unlocked. A second

jailer then turns locks 2, 4, 6,. . . . Then a third jailer turns locks 3, 6, 9,. . . , a fourth turns locks, 4,

8, 12,. . . , etc. In the end, which cells are locked and which unlocked? In the two generalizations

we solved, the nth jailer turned every 2nth lock, and every .2n C 1/st lock, respectively.

Presentations of results by these students were made at Mathematics Awareness Day, held annually on the

campus of Saint Joseph's University.

Finally, not all projects need to be one semester in duration. A reasonably small project would involve

asking students to create their own word problems, particularly ones that are solvable in integers using

Diophantine equations or the Chinese remainder theorem. Two examples from Number Theory are given

below and [2] contains some additional ideas.

1. On the second of April, a zookeeper fed a llama at 6:00 AM, a dolphin at 8:00 AM and a platypus at

noon. The zookeeper feeds the llama every seven hours. He feeds the dolphin every 11 hours. Lastly,

he feeds the platypus every 13 hours. When the feeding times coincide, he needs assistance feeding the

animals. How often does he have to find two additional zookeepers to help him feed the animals since

he can't be in three places at once? When is the first day after April 2 that this happens? [Submitted

by Brian Klint.]

2. Your little brother acts like a werewolf on the first day of every full moon. He has been doing this

ever since he saw the movie \American Werewolf in Paris." The next full moon is tomorrow and they

happen every 29 days. Your great aunt enjoys celestial events, celebrating every solstice and every

equinox with a huge party in the backyard. One or the other occurs every 93 days, the next one being

18 days from now. Your mother is very devoted to her deceased parents and visits the cemetery every
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Saturday. The next Saturday is four days from now. You are leaving for college exactly three years

from today, but you believe you will not be able to make it if all three events happen on the same day.

Do you have anything to worry about? [Adapted from an example submitted by Paul Grow.]

Puting it all Together in Probability and Statistics

A probability and statistics course is another natural place to introduce reading, writing, and projects. Data

abounds in news articles, in other textbooks, in sports, and in almost every other corner of life. Reading

and analyzing the numbers presented sometimes shows that the conclusions go beyond the scope of the

data.

When students take a serious look at popular statistics, they begin to get a sense of the necessity

for accuracy in reporting. Written explanations of their analyses are not only thought provoking but also

reinforce the concepts the instructor is developing in the course. These include selecting proper sample

sizes, using random sampling techniques, and the like. Below is a brief reading list for Probability and

Statistics.

M. Bonsall, \Prediction in insurance," Pi Mu Epsilon Journal 10 (1995) 191{193.
V. Bronstein, and A. S. Fraenkel. \On a Curious Property of Counting Sequences," The American

Mathematical Monthly 101 (1994) 560{562.
Chance (A quarterly journal), Springer-Verlag, Inc., New York.
D. Fallis, \Mathematical Proof and the Reliability of DNA Evidence," The American Mathematical

Monthly 103 (1996) 491{497.
D. Fowler, \The Binomial Coefficient Function," The American Mathematical Monthly 103 (1996)

1{17.

B. Hayes, \Randomness as a resource," American Scientist 89 (2001) 300{305.
||, \Statistics of deadly quarrels," American Scientist 90 (2002) 10{15.
H. B. Hopfenberg, \Why Wars Are Lost" American Scientist 84 (1996) 102{104.
M. Kline, Mathematics in Western Culture, Oxford University Press, London, 1990.
D. P. Minassian, \The Current State of Actuarial Science," The American Mathematical Monthly 103

(1996) 552{561.

M. Schilling, \Things Aren't Always What They Seem," Math Horizons 9 (2001) 23{25.
G. Slade, \Random Walks," American Scientist 84 (1996) 146{153.
Stats (A biannual journal), The American Statistical Association, Washington, DC.
D. Wheeler, \The Statistics of Shape," Math Horizons 4 (1996) 26{28.

In a year-long course in probability and statistics, there is sufficient time for students to engage in

projects at different levels. Early in the course, they can work on projects involving descriptive statistics.

For instance, a team of students can compare the nutritional levels of a particular food product provided by

a number of companies. A simple descriptive study can describe the fat, cholesterol, salt, protein, calories,

and vitamins in a typical junk food product such as potato chips. While gaining more depth in the subject,

students can think about major projects that require a much deeper analysis.

Begin preparing for major projects by discussing with each student her/his interests, career plans,

hobbies, etc. Based upon this interview, projects can be found that will be challenging and interesting

to the students. The process of finding suitable projects is time-consuming but well worth the effort.

The instructor may be able to capitalize on the data that students collect as a hobby. This is why it is

important to try to discover student interests before suggesting projects. For example, one of the author's

students worked part-time with a paramedic unit. He was interested in the effectiveness of emergency

paramedic care in the city of Philadelphia. The student collected the dispatch data and performed an

excellent analysis. Another student had been collecting data on the local weather for a number of years
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and used it to analyze seasonal variations and to look for a global warming trend. Some students were

interested in the relationship between a college's religious affiliation and students' views on abortion,

capital punishment, and euthanasia. Finally, comparing on-line prices with those from stores and catalogs

provides another topic of interest to students.

Scientists are interested in the specifications of their equipment and in the accuracy of measuring

devices, such as balances and scales. Students can ascertain if the variation in measurements taken at

different temperatures and different humidity levels are within the range given in the manufacturer's

specifications for the instrument. Faculty members from other departments often have projects involving

data collection and analysis. Mathematics students can provide a service to these professors and to their

departments. For a fuller discussion of topics in probability and statistics, see [1].

1.2.4 Showcasing Student Accomplishments

A day set aside in class for students to present the results of their research is very worthwhile. If the

instructor does not want to sacrifice a large block of time, smaller blocks can be used each week. Be-

yond the class expositions, however, there are other opportunities that allow the students to demonstrate

their independent work to a broader audience. The events below describe settings that feature student

presentations at all levels.

If the student project culminates in a major result, the student may be invited to be the guest speaker

at the departmental honors society induction ceremony. Similarly, the mathematics department may have

an honors program through which advanced students engage in independent research and expound on their

results in a departmental colloquium. Most colleges and universities have an honors program in which

the results of independent student research are presented to the honors faculty. Finally, your outstanding

student may become a speaker at the Pi Mu Epsilon annual meeting held in conjunction with the summer

MathFest meeting of the Mathematical Association of America. Students also may present posters at the

joint annual AMS/MAA meeting in January; note that this venue has a limited group of participants and

a limited audience.

All of these options apply to the brightest students. Other venues are needed so that all the students

have an opportunity to demonstrate their work. For example, each year, the Association of Women in

Mathematics, in conjunction with the National Security Agency, sponsors a Sonia Kovalesky Mathematics

Day for high school girls. Several colleges and universities around the United States participate by holding

an event on campus. Many institutions also have open houses for prospective students. Consider having

the students present their projects at these events for high school students. Seeing the accomplishments of

young adults is an inspiration to high school students and also a rewarding experience for the mathematics

majors. At Saint Joseph's University, one activity on Sonia Kovalesky Day is a problem-solving contest.

Monitored by a faculty member, undergraduate mathematics majors create the problems, moderate the

contest, grade the results, and present awards to the winners. The problems are varied and interesting and

usually involve only elementary mathematics. However, deductive reasoning and the ability to analyze the

problem are crucial to their solutions.

Each April is Mathematics Awareness Month, sponsored by the Joint Policy Board for Mathematics

[3]. The National Council of Teachers of Mathematics also sponsors a Mathematics Awareness Week.

One opportunity to participate is to schedule a Mathematics Awareness Day in the department. As

an example, consider the day's program at Saint Joseph's University. At this institution, many instructors

strongly encourage their students to present a poster session for the event. Students from sophomore, junior

and senior years usually make the presentations. The Pi Mu Epsilon advisor schedules talks throughout

the day and coordinates the event. Students may invite their friends and the Department invites interested
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faculty from other departments and outside guests to attend. High school students who have been accepted

as mathematics majors also may be invited to attend the activities. Although presenting a poster or project

is not mandatory, student involvement is high. Some of the projects are completed jointly, while others

have a single author. Presentations generally involve a poster and a verbal exposition.

Scheduled when most students are not in class, Mathematics Awareness Day begins in late morning

on a Friday. Student talks are scheduled to last between 15 and 20 minutes, depending on the time needed

by the presenters. In the late afternoon, a guest speaker addresses the students and faculty, with activities

usually ending by 6:00 PM. Examples of some student topics for the past few years can be found on the

web page

http://www.macs.sju.edu

under the heading of Students. Following the presentations, the posters are displayed in the Department

area for a few days. Publicizing the event and noting that food will be served encourages students to attend,

even if they are not speakers. (Serving food is always a good idea when trying to attract students.)

Student presentations can also be made in cooperation with larger organizations that include other

departments. For example, the scientific research association Sigma Xi encourages research activities in

its chapters. If there is an active Sigma Xi group on campus, the chapter may sponsor lectures and an

annual research symposium or poster session. While generally thought of as a way for science students to

demonstrate their research, mathematics majors also can display posters and explain their undergraduate

research in this forum. Each spring, a regional student research symposium is held for the Philadelphia

metropolitan area at Saint Joseph's University. Students from many colleges in the Philadelphia area

display posters at the symposium. In 2002 there were 120 posters registered from more than twenty-five

colleges and universities from five states. Areas of research included psychology, language development,

mathematics, computer science, biology, physics, astronomy, engineering, chemistry, and environmental

science. The abstract booklet for this Sigma Xi event is available at

http://www.sju.edu/honor-society/sigma-xi/book.pdf.

Similarly, the College of Arts and Sciences sponsors a Scholarship Day to exhibit the undergraduate

research of all students in the College of Arts and Sciences. Once again, the best projects completed by

mathematics students are presented here.

It is important to reward the students for their efforts by allowing them to show other mathematics

students and faculty members their accomplishments. Students take great pride in their work. Although

the depth and sophistication of the projects will vary with the talent of the students, all can participate

at some level. Professors will find that once students have participated, they will want to continue to do

so in future years and will have a greatly increased interest in mathematics. It is gratifying to see the

students mature as their expositions become more polished with experience. The smiles you see here are

genuine|students are happy displaying their results. When asked if they will participate next year, the

response is an enthusiastic \Definitely!"

1.2.5 Other Creative Endeavors

The examples listed above are intended to whet the appetite of the reader. There are many other topics for

mathematics faculty members to consider. We should always be inventive; that is, we should think creatively

and be open to student ideas. There are many ideas for reading, writing, and creative projects which can

be completed by students. Be imaginative and capitalize on the students' creativity to find projects for

upper division courses. Try a small project, or simply a reading list, to get started. Look for local problems.

Usually one will be able to find a few campus problems (for example, problems involving queuing theory)
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to analyze. And interesting problems abound. We shouldn't be afraid to learn with our students. Faculty

members who accept the challenge of involving undergraduate students in reading, writing, and projects

will be rewarded tenfold for their efforts.

Some of the excellent suggestions for engaging students in projects and problems arise from the ef-

forts of faculty members from diverse campuses. Many ideas were presented during a session at the

joint MAA/AMS meeting in January, 2003.[4] For example: David Knellinger (United States Military

Academy) discussed \How to Solve the `Little Things' in Life"; Murray Siegal (Sam Houston State Uni-

versity) explained \Using a Simulation to Model a Queuing Problem"; Bruce Pollack-Johnson (Villanova

University), author of a text on the subject, explained \Teaching Modeling with Semester-Long Student-

Generated Projects"; Therese Shelton (Southwestern University) introduced several modeling applications,

including repeated drug doses and a room full of ping pong balls for elementary courses; and Steven Het-

zler (Salisbury University) discussed \Using the Writing Process to Help teach the Mathematical Modeling

Process."

For sample reading lists for a variety of courses, see the web page

www.sju.edu/�arash.

For suggestions for student activities and presentations, see the web site of the Mathematics and Computer

Science Department at Saint Joseph's University: www.macs.sju.edu cited above. Many activities can

be found under \Students." These include Mathematics Awareness Day, Sigma Xi poster sessions, and the

Sonia Kovalesky Mathematics Day.

1.2.6 Conclusion

There are many ways to increase student involvement. Some of them are restricted to a particular course

while others involve reaching out to the broader mathematical community. In either case, students broaden

their horizons and expand their knowledge. Active learning is the key to success for any of these suggestions

or programs. Whether presenting their findings in a written paper, oral presentation, or poster presentation,

students enjoy the experience and take pride in their work. As mentioned in the introduction, many projects

discussed lend themselves to capstone experiences. The entire department, both faculty and students,

benefits from student presentations if they are displayed for all to see. There are numerous faculty members

at various institutions working with students to enhance learning through readings, projects and other

creative endeavors. Consult the MAA index of conferences or the MAA web site to find out more about

the fascinating extensions of a variety of courses.
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1.3
How to Develop an ILAP

Michael Huber and Joseph Myers

United States Military Academy

1.3.1 Introduction

In this guide we briefly explain what an Interdisciplinary Lively Application Project (referred to hereafter

as an ILAP) is, how ILAPs are developed and executed, and what considerations and strategies arise when

developing and using ILAPs. While there are many perspectives and elements to consider, we include only

the essentials here and leave the rest of the material for future articles.

An ILAP is a process that generates a product that drives a student learning experience. ILAPs are

student group projects that are jointly authored by a faculty member from the Mathematical Sciences

Department and a faculty member from a partner department. ILAPs can be used in the mathematics

classroom, in the partner classroom, or in both to let students work on mathematical concepts within

the context of another discipline. ILAPs help connect the curricula by taking applications and current

methods from a using department and connecting them with the concepts and techniques in the mathematics

curriculum. They also can be used to reach forward to preview ideas from applications that wait downstream

or backward to connect current mathematical topics with ideas from applications that already have been

studied.

ILAPs provide students with practice in the interdisciplinary threads of modeling in scenarios more

realistic than those usually presented within the mathematics curriculum. Students engage in reasoning

(within an applied context) and problem solving, use technology as a tool to enable analysis of complex

situations, connect and integrate ideas from different curricula, engage in teamwork in problem solving,

and learn how to communicate methods, conclusions, and recommendations. All of this is done either in

written technical reports or in a technical briefing given by the group.

The product can be formatted as the instructor desires, but experience shows that the following elements

are useful:

� Problem statement.
� Background material. This is often as important for mathematics instructors as it is for students, since
the application discipline is often outside their expertise.

� Sample solution. Not intended to be used as a grading guide, but rather to boost the instructors' comfort
level and understanding of the problem.

� Report/briefing guidance for student authors/presenters.

23
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There are several benefits gained by using ILAPs. These projects motivate student efforts through rele-

vance. By showing students how current mathematical ideas are used in other disciplines, we demonstrate

the areas of learning that become accessible to them as they learn and master mathematics. ILAPs seek

to support student growth in the interdisciplinary threads of modeling, reasoning and problem solving,

technology, and communication. ILAPs give students early experience in solving problems as part of a

team. Finally, ILAPs develop partnerships among faculty that lead to discussing and developing curricula.

After you have used ILAPs for a while, you realize that the most valuable part of ILAPs is the process
of teaming and working with a partner department rather than the product that is created at the end. We
have authored many ILAPs at USMA and initially thought that we only needed to develop a few that we

could then refine and recycle over a several-year timeframe . However, we have found that most of the

value lies in the process rather than the product. We typically use each ILAP only once or twice, spending

our time partnering and developing new ILAPs rather than refining, reusing, and publishing old ones.

Developing and Executing ILAPs

A specific Physics ILAP involved modeling the compound bow, a relatively recent improvement of the old

longbow. Located at opposite ends of the bow arms are cams which allow a decrease in the amount of force

required to hold the drawstring at a full draw. Students estimated an arrow's initial velocity theoretically

(using a Java applet on a course webpage) and then experimentally from given data. They then calculated

and discussed the uncertainty of their solutions. Maximum effective ranges were determined, which took

into account certain drag forces. These requirements motivated the students to discuss all aspects of the

problem using physics and mathematics. They asked questions like: Suppose the draw length or sighting

angle is changed? Are there any aerodynamic forces which can be ignored? What assumptions need to be

made to apply physics principles in the analysis? The scope of this example is typical of most ILAPs.

The usual chronology for developing an ILAP begins by deciding on the topic and on the skills to

be used. These usually are current topics and skills from the mathematics curriculum. Then proceed as

follows:

� Approach a faculty member in another department with what you want to do and ask for his or her
ideas on an application that uses these skills. This involves teamwork, communication, and creativity

on the part of the faculty, the same habits we seek to develop in our students. One of the important

goals of the ILAP process is to gradually develop an interdisciplinary culture where partner faculty

take the initiative in seeking out mathematics faculty to develop ILAPs covering concepts and skills

needed in the partner discipline's courses. It is unlikely that this will happen immediately.

� Jointly write the ILAP with the partner department. Incorporate the mathematical topics and skills that
you want exercised and include the partner scenarios, ideas, and connections that will be seen again by

students in the partner discipline. This can be either a true joint process where both authors sit down

and work together or an iterative process where one author (from either discipline) begins sketching

the product, which is then refined through a series of iterations/input/revisions between the authors.

� Distribute the student handout and make the initial presentation to students. This usually involves
prompting the students for what they already know about the scenario, helping them identify assump-

tions, seeing if they have some initial guesses about what a reasonable resolution would look like,

etc. This initial presentation is often done by the mathematics faculty but it can be done with great

effect by the partner faculty. It is a powerful message to students when the partner faculty visits the

mathematics classroom, explains the scenario from their discipline, and challenges the students to learn

the mathematics that will enable them to begin to succeed in the partner discipline.
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� Work begins on the ILAP. Students typically have a week or two between the time the ILAP is assigned
and when it is due. We find that some degree of student-faculty interaction on the ILAP is beneficial

during this period. An effective design technique is to time the ILAP so that students are learning

the skills in class at the same time that they need to use them on the ILAP. Instructors will typically

avoid working on portions of the ILAP in the intervening classes. They instead will work on other

problems that use these concepts and will explicitly ask students how they think the material they are

currently covering could be used in the ongoing ILAP. However, be careful not to let the students

divide-the-work and submit or wait until the last minute to begin working on the project itself.

� Student groups make written and/or oral presentations of their analyses and solutions. Written presen-
tations provide an excellent opportunity to develop skills in writing technical reports, with executive

summaries, assumptions, analysis, conclusions, and supporting technical appendices. Students appre-

ciate regular oral presentations as well. These presentations give them the opportunity to express

themselves in person, allow instructors to ask clarifying questions on the spot rather than being forced

to rule on written vagaries, and permit the team members to work together in a more integrated and

balanced fashion.

After student submissions or presentations, the partner faculty can give an expert critique and extension.

This helps bring closure to the project and shows how the basic ideas and skills just used are amplified

and made more sophisticated in the downstream discipline. It also reinforces the work the students have

done in preparing themselves to study and understand another discipline.

1.3.2 Strategy for Using ILAPs

Experience has shown us that ILAPs can be made more useful and successful by consciously using

several strategies.

� Keep the application sufficiently understandable and comfortable for faculty. But it is acceptable and
even healthy to get a bit beyond faculty expertise. (This reminds the faculty of what it is like to be a

student.)

� Involve the students. Keep the application and the concepts involved at their level so they retain
responsibility. Otherwise, students will rely heavily on assistance from instructors, peers majoring in

the area of application, or other sources rather than struggling within their group.

� Capitalize on students' intuition and increase their ability to verify it. Do this by choosing scenarios
involving motion, dollars, volumes, or other physical quantities so that students can apply a reality

check on their own. This is much better than using quantities for which students have little feeling.

� Incorporate technology. There are a lot of complex problems out there that will be closer to what
practitioners deal with. Seek to leave some of the complexity in the scenario and let students use

technology to deal with it.

� Increase and intensify faculty cooperation. This is one of the main reasons for doing ILAPs, so don't
try to cut it out of the process by authoring most or all of it within one department.

� Create scenarios that are flexible, multifaceted, and open-ended. The best projects come from scenarios
that can be analyzed in a variety of different ways and which involve several very different constraints

or considerations. Encourage multiple and, where possible, ingenious approaches to the ILAP through

graphical, numerical and analytical techniques. Force students to reach beyond the algorithms and to

decide how to appropriately analyze the problem they are facing.
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� Be sure to include recommended guidance for students who need it. It is easy to be ambitious with
ILAPs. Think about what your goals are and what you realistically expect your students to do. If you

find your expectations are too ambitious, including some background in the application and provide

guidance or hints on what you expect in order to make the ILAP more realistic.

Producing ILAPs which admit the need for, or actually require, student research, student discovery,

and student teamwork promotes student development in these areas in ways that just are not possible with

traditional activities. Since individual responsibility is sometimes neglected in group projects, consider

reinforcing it with a short ILAP quiz or a question on a regular test. This will reward those who understand

the key concepts and conclusions from the ILAP. In addition, encourage discussions and properly cited

collaborative work between groups and others. This process introduces our students to the standards and

habits of scholarship.

Focusing on one or at most a few basic mathematical concepts within the ILAP helps students un-

derstand the connection between that concept and how it arises in an application. Introducing too many

concepts can prevent students from seeing this connection. At the same time, it is important to identify

connections among the applications and disciplines. One of the advantages of a mathematics curriculum

is that it distills ideas from several very different disciplines into a single concept. Reverse the process for

students by describing how a concept that is realized in a certain way in one discipline can have different

realizations in other disciplines.

The ILAPs themselves should be self-contained but at the same time be open to use in the partner

discipline. ILAPs are not intended to be a feature only of the mathematics curriculum. Make them more

generally useful and they will work double-duty in another department either as a starting point for

discussing the application or as a way of refreshing students' memories of the mathematical concepts

involved. This helps cultivate student learning from another perspective.

1.3.3 Considerations when Developing an ILAP

After developing many ILAPs for different levels of students in a variety of courses and with many

different partner departments, we have found the following checklist of considerations to be useful during

development:

� What mathematical topic and skills should be included? Is it a mathematical topic that needs some
real life application? Or should it involve mathematical skills used in another discipline that students

find hard to understand?

� What discipline or application should be our main focus? Should we play to student interest or intuition?
Should we cater to mathematics faculty comfort or interests? Or should we focus on partner faculty

interest and the potential for revisiting the application later in the partner department's curriculum?

� What scenario should we choose to develop? Again, do we play to student interest or to their intuition?
� How sophisticated should we make the scenario? How much information about the model should the
instructor provide to the student and how much should the student discover on her/his own? Should the

requirements be more prescriptive or more open-ended. Or should they be some sort of combination

of both?

� What should the range of difficulty be? If easier, then maybe we should design something that can be
done mostly analytically and by hand. If harder, then maybe we should make it clear that the most

appropriate information we need to make a decision may be numerical, visual, and/or analytic and that

it will require technology to generate and analyze.



1.3 How to Develop an ILAP 27

� How do we develop group responsibility? Do we make requirements unique among the different student
groups? It is valuable to have all groups working on the same scenario and requirements, especially

since students report learning a lot from others when they all have a common task. But to encourage

group accountability and ownership, it helps to give each group a unique set of parameter values. We

have done this for ILAPs in courses of up to 1000 students, and have been pleased with the balance

between collaborative learning and group accountability and ownership.

� How do we develop individual accountability of team members? Even within assigned groups, you want
to see a balance between collaborative effort and individual contribution to the project. One common

problem that occurs within assigned groups is that one or two members do all the work while the others

do little. Or you might encounter a divide-the-work and submit approach where each member does a

portion in isolation and the results are stapled together and submitted with no collaboration and no

member having thought about the big picture of the project as a whole. Options available to deal with

this problem include giving a follow-up quiz on the project, putting a simplified project requirement

on the midterm or final, or opting for oral student presentations and spreading the questions among all

group members. Of course, the act of advertising to students that these things will be done is effective

in encouraging individual accountability within each group.

� Do we want to develop written presentation skills via a technical report or do we want to develop oral
presentation skills via a group decision brief? Do we want to give the partner department a chance

to deliver an expert critique to students, along with a summary of what students should have found.

Should this critique include extensions to show how this application is treated in the partner discipline?

� How do we design the student time commitments? It is very important to know about how much
student time an ILAP will require. Experience and instructor solutions help here. We figure on a ratio

of 1 instructor hour equating to 3 student hours. We have found about 8 or 9 hours of work for each

student to be a good requirement. Do we designate this time in the syllabus? Students need quality

time to do a quality job, so rather than poach on their time we build the expected amount of student

time required into the syllabus. This is usually done with class drops or reduced assignments.

� How do we grade the ILAP? What does the instructor expect of the students? Know what results
you expect before you assign a project. Different levels of project difficulty can be accommodated in

how you grade, as long as you know what you expect of your students. Should there be some type of

standardized grade sheet? Some faculty find it useful to prepare a sheet indicating what they expect

from students' final products. Grading against this type of cut sheet explicitly tells students what is

expected and valued and helps standardize the grading in a large course. Others prefer to grade against

their mental expectations. This is certainly quicker since it is easier for instructors to adjust expectations

based on what most students are doing. This approach also allows for more judgment.

1.3.4 Guidance for Students on Written Reports

A written report is a great way for students to communicate what they have done and what they have

discovered from their projects. However, effective report writing is not easy and students need help in

developing their skills through practice, experience, and feedback. As students progress through their

programs, most of them will be required to do technical writing in other courses. To the extent that faculty

can coordinate their technical writing needs and expectations for students, we can help students grow and

mature as problem solvers who can effectively communicate their analyses and recommendations to others

for adoption and action.

There is no best format guide, but as an example we summarize the writing guidance that we give our

students. This format fits our needs and is consistent with the format used in the courses of our partners.
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Executive Summary: A one or two page summary of the scenario, including what questions were

addressed, how they were addressed, and what the students' conclusions and recommendations are.

This summary may be formatted as a letter addressed to the client or user if that is appropriate.

Problem Statement: This is a concise summary of the issues of interest in the given scenario.

Facts Bearing on the Problem: These are facts that are known from either the problem statement or

which are uncovered during the research and problem solving stages.

Assumptions: These fill the gaps between what is known and what is required to do a successful analysis.

Each must be necessary and not provable from known facts. Justification should be provided for each

assumption and, if at all possible, the assumptions should be checked for consistency at the end of the

analysis.

Analysis: This represents the heart of the work. It may include the following sections as appropriate: Def-

inition of Variables and Symbols, Methodology Used, Formulas Used, Calculations, Essential Graphs

and Diagrams, and Discussion of Result. (Note: Many of these sections are combined into the analysis

narrative rather than separated into sections.) It is critical that the analysis be presented in narrative

form, with equations and graphs used to clarify the exposition. Students are not allowed to present long

multi-line derivations with no explanatory text in this section. Long derivations or supporting work

that disrupts the narrative are referenced here and presented in an appendix (see below).

Conclusions and Recommendations: This presentationmust follow logically from the analysis narrative.

No new material should be introduced here. The contents must directly address the issues of interest

from the scenario.

Appendices: As stated above, long derivations or supporting work that disrupts the analysis narrative are

referenced in the narrative and presented in an appendix. Students know that each appendix must be

referenced somewhere in the main body.

Acknowledgments: All sources outside the group that are used in the project must be given due credit

here. We expect some amount of learning to happen from other groups, but each group must give

specific credit to the group, paper, or other source from which they receive assistance. They also must

be specific about what assistance was received from each source. Normal and healthy assistance is

encouraged and is not penalized, while excessive reliance on a single source in a particular part of the

project is discouraged and may result in a lower academic grade.

1.3.5 Grading

As our instructors assign grades to reports, they use the following institutional standards for writing.

Substance is the key area we grade on, but instructors make corrections from all four areas on student

projects, and can and do make grade adjustments for strengths or weaknesses they note in all areas. You

may want to incorporate similar standards from your institution in your grading process. Our four writing

areas are:

Substance: The correctness, completeness, and persuasiveness of the exposition.

Organization: The logical flow of the report. The format guide presented above, or a suitable student

variant, is usually a big help in this area.

Style: Avoid slang, undefined acronyms, undefined or inappropriate technical jargon, and excessive use

of the passive voice. Style is important in technical writing and achieving the right balance between

discourse and technical expression is key to communicating with the reader.
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Correctness: The document must be free of spelling, grammatical, and punctuation errors. (The correct-

ness of the mathematics and logic is considered under the area of Substance.)

We have an obligation to our students to provide them with experience working in small groups, to

develop their skills in the use of technology, to develop their communications skills (reading, writing, and

presenting), to cultivate their self-esteem and confidence as problem solvers, and to demonstrate ways that

their learning connects to the rest of their curriculum. We have found ILAPs to be a great way to provide

appropriate developmental experiences in each of these areas.

1.3.6 Student Feedback

As stated above, one of our obligations is to provide a sense of connection between mathematics and the

students' curriculum. Connecting their different learning activities empowers students to become better

problem solvers in the future. We asked several students for their feedback after completing ILAPs.

The responses below are from students in freshman and sophomore mathematics classes (single and multi-

variable calculus) who completed ILAPs in partnership with the Computer Science, Physics, and Economics

Departments.

One Computer Science ILAP dealt with designing, implementing, and testing a solution to an integral

calculus problem. The student is a Hollywood analyst assigned to a film where a stunt driver is to drive a

motorcycle off of the top of a building, through a protective glass wall, across a street, and into a pool on

top of another building. In the single-variable calculus class, students used integration skills to determine

the critical speed of the motorcycle. In the Computer Science class, students designed a flow chart and

algorithm to describe the procedure their program would use to solve the program.

We discussed the compound bow Physics ILAP earlier in this paper. Another Physics ILAP involved

finding a model to predict the trajectory of a projectile fired at an elevation different than the target's

elevation. To make the problem more realistic, students had to account for a no-fire ceiling which the target

could not penetrate for air-safety reasons. This problem in kinematics connected physics and multivariable

calculus.

The Economics ILAP placed the students in a systems analysis role for the procurement of a major

vehicle and asked them to estimate a reasonable cost for producing a number of vehicles in the coming

year. The Cobb-Douglas equation was used for production output and data was provided on past production

inputs. Students developed and refined constraint and objective functions based upon the stated require-

ments. Inflation was introduced and then students conducted sensitivity analyses. This problem connected

optimization to a relevant area of economics.

The sophomores worked through the jointly-authored (Math/Physics) kinematics problem in their math-

ematics class a few weeks before studying kinematics in their physics class. One student wrote, \I feel

that the project has definitely helped me to better understand the kinematics block of Physics. The math

department's efforts to link mathematics to other departments is worthwhile and beneficial."

Another stated, \Project 1 was a great help with the integrations of movement that we are currently

covering in physics. Linking our math project with physics was very useful and has amply prepared me

for the material that is now being covered in class." Here is another perspective: \In PH203 we have just

started doing those types of problems and after doing the math project solving these types of problems is

much easier and I understand the concepts involved much better. I think that the connection between math

and other departments is a good idea. It allows a better understanding of the applications of physics and

allows some variety in the math course."

Confidence-building is another instructor obligation. Students need to be comfortable when approaching

and solving real-world problems. One student wrote, \Physics is often easier to visualize, so applying the
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math to a physics-type problem of projectiles made the math make more sense." Another stated, \When

the material is covered in physics, we already have a background in the math, so it's less of an exercise

in memorization than in problem solving, which is what it should be. I've also noticed that the math that

we've taken so far has related to economics as well as physics." A second student echoed this sentiment

with mathematics, physics, and economics: \This project allowed me to further strengthen my grasp on

previously covered high school material. Since physics laws and kinematics are never changing, we need

to be comfortable in the application of these principles. Material I have been taught and am learning is

greatly reinforced when we do assignments such as these. This second economics based math project is

great because I can see all the rules and theory I have learned in my economics class really take shape."

A student who worked through a mathematics/computer science ILAP wrote, \It is very useful for

different departments to cover the same ideas. Having two departments teach the same ideas will definitely

contribute to the learning process. [At first,] I did not understand how the equation was created, but now

I have a better understanding of both Math and CS. By showing the different ways of solving problems I

think cadets will gain a more in-depth understanding of the many factors that go into solving any problem."

Students also feel that ILAPs can broaden their communications skills. One student wrote, \The project

definitely gave me a good idea about the mathematics behind classical motion. As our physics course has

recently transitioned into kinematics, I feel well prepared as a result of this project. As with all math

projects, I was able to practice my writing skills in the explanation required."

One final comment made by a student: \I believe that it is essential that all departments, not just math,

try to link into the other departments and I felt that this project did a very good job of linking into what

we are just now starting to study in physics. I most definitely gained a better understanding of the physics

and how these types of problems can be tackled with the help of the project. The projects do involve a

lot of work and take a considerable amount of time, but I agree and think that they are essential to truly

understanding a given topic, in this case projectile motion, and being able to apply what we have learned

to real world situations."

1.3.7 Conclusions

This paper has presented a thorough and detailed outline of ILAPs. ILAPs connect the curricula of two de-

partments by bringing together the applications and current methods of a user department with the concepts

and toolkit techniques of a mathematics department. The applications provide relevance to the students

and offer them a chance to reinforce their knowledge in more than one class. The interdisciplinary threads

of modeling, reasoning, problem-solving and communicating, coupled with the integration of technology,

connect the partner departments.
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1.4
The Role of the History of Mathematics

in Courses Beyond Calculus

Herbert E. Kasube

Bradley University

I am sure that no subject loses more than mathematics

by any attempt to disassociate it from its history.

| James Glaishier (1848{1928)

1.4.1 Introduction

Glaishier's comment is especially true in mathematics courses beyond calculus. A mathematics course

that fails to integrate the history of the subject matter presents the mathematics in skeletal form. While

the skeletal structure might be instructive, the real meat and heart of the subject are missing. This paper

discusses the role that the history of mathematics can play in courses beyond calculus. It will not discuss a

history of mathematics course but rather the integration of historical topics into other mathematics courses.

The first question that one asks is \Why include the history?" We could answer (sarcastically)\Why

not?" but that is not an adequate answer. As mentioned above, by seeing the mathematical content without

its history students see only a skeletal foundation for the subject. They fail to see some of the motivation

for the subject and fail to appreciate the human effort involved. They also do not gain a proper appreciation

for the process of mathematical development that has occurred. We all know that most mathematics that

we study today went through a metamorphosis over the years. A student seeing this development will gain

a greater appreciation for how far the subject has come since its beginnings.

An entire volume could be written about the uses of history in specific mathematics courses. The pur-

pose of this article is more limited. Hopefully it will stimulate reader interest in the history of mathematics

and in perhaps including more of it in her/his teaching. It discusses several courses in which the author has

used history with good results and mentions some possible sources for other courses. Finally, it provides

a fairly extensive set of references that can be a good source for history material that can contribute to the

overall learning of mathematics in a variety of courses.

1.4.2 Graph Theory

I have found that an upper level course in graph theory provides an excellent opportunity to introduce a

good deal about the history of the subject. The principal text for the course is by Aldous and Wilson [1],

33
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and the historical text by Biggs, Lloyd, and Wilson [3] is used as a supplement. The latter selection offers

students greater historical insight into the development of graph theory, since it includes numerous original

papers on the subject. The students read the selections and then discuss them in class.

The first paper to read is Leonard Euler's 1736 solution to the Konigsberg Bridge Problem, entitled

Solutio problematis geometriam situs pertinentis, which means The solution of a problem relating to the
geometry of position. We read and discuss Euler's entire paper, including his generalization. Some source
books such as that by Calinger [9] leave out the generalization from their version of this paper. It is entirely

appropriate that Euler's paper is the first one encountered by the students since it is considered the first

paper ever written on graph theory.

Euler's arguments in this paper are combinatorial in nature and no modern graph theoretic terminology

is used. Therefore, students can read and appreciate it before they know anything about graph theory. They

quickly see that mathematical ideas are not always born in their finished form. The concept of a graph

evolved through the year. Part of the beauty of Euler's work is that the exposition is clear and the steps

are well motivated. Reading this paper gives the students insight into Euler's problem solving skill.

Students in graph theory also read Hierholzer's 1873 paper entitled Uber die moglichkeit, einen lin-
ienzug ohne wiederholung and ohne unterberechnung zu umfahren or On the possibility of traversing a
line-system without repetition or discontinuity. This paper presents the converse of Euler's result. Stu-
dents see that while Euler gave a necessary condition for a solution, he did not provide sufficiency. This

allows the instructor to point out the important distinction between a necessary and a sufficient condition.

Additional readings include Euler's letter to Goldbach, in which we see Euler's formula for polyhedra.

This offers an opportunity to illustrate the intersection between mathematical disciplines. Euler's formula

is then extended to planar graphs. Kuratowski's 1930 paper on planar graphs allows students to see some

relatively recent history of mathematics.

Another topic in the course that offers a wealth of interesting history is the Four Color Problem. Many

interesting individuals and events appear during this period, which began with a letter from Augustus

de Morgan to William Rowen Hamilton in 1852 and ended with the final resolution of the problem by

Kenneth Appel and Wolfgang Haken in 1976. Students read of Kempe's unsuccessful attempt at a proof

as well as some of the controversy surrounding the use of a computer by Appel and Haken. An excellent

resource for the history of this problem for both faculty and students is Robin Wilson's book [34], which

makes an excellent addition to the course and serves well as a foundation for further study by the students.

1.4.3 Combinatorics

Combinatorics is another course where historical topics can be integrated successfully with course content.

Here the students read the first part of Pascal's posthumously published paper Traite du triangle arith-
metique, Treatise on the arithmetic triangle, that appeared in 1665. One of the interesting aspects of this
section of Pascal's work is that it contains little, if any, motivation for the construction of the triangle.

In an internalist's view of the history of mathematics, this is mathematics for mathematics' sake. This

is in contrast with Euler's paper discussed above, which came about from an outside problem. Pascal's

paper also introduces some awkward notation that can be quite confusing. This shows students that being

careful with notation can be very important in helping others understand the solution to a problem. Anyone

interested in learning more about the full history of Pascal's arithmetical triangle is referred to the text by

Edwards [14]. In it we see that Pascal's entire paper did in fact contain applications of the triangle to both

combinatorial problems and binomial expansions.

The combinatorics course also offers the opportunity to present Isaac Newton's contribution to the

Binomial Theorem. In his early work with calculus, Newton looked for expansions of binomial powers
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.x C y/p=q , where p and q are positive integers. Here students see the interface between combinatorics

and the calculus of infinite series, allowing them once more to recognize the connections between diverse

areas of mathematics.

1.4.4 Abstract Algebra

The study of abstract algebra is rich in history, and even gives us an opportunity to see the human side of

mathematics. For example, we study the youth and tragedy of Evariste Galois(1811 -1832). The fact that

Galois did so much significant mathematics and died at such a young age impresses the students, who

are close to his age at death. The study of his life also shows how non-mathematical events such as the

French Revolution can affect the history of mathematics. A historical novel, The French Mathematician,
written by Tom Petsinis [22], chronicles the story of Galois in some detail.

The story of Emmy Noether (1882{1935) provides another example of how world history influences

the history and development of mathematics. Upon receiving her doctorate in mathematics from Erlangen

in 1907, Noether found it difficult to secure an academic position. With the support of David Hilbert, she

eventually came to Gottingen. Initially forbidden to teach because of her sex, Hilbert arranged for her to

teach one of his courses, paving the way for a successful transition to teaching. Forced to leave Germany

in 1934, Noether immigrated to the United States, where her influence on future mathematicians at Bryn

Mawr cannot be exaggerated. In particular, her influence on female mathematicians was so significant that

the Association for Women in Mathematics sponsors a Noetherian lecture in her honor. Noether's story

is one of struggle against irrational prejudice and discrimination. Her triumph serves as an inspiration for

generations to come.

We do less reading of original sources here than in the courses discussed previously. If you wish more

readings, the collection of sources by Calinger [7] contains articles by Neils Abel (1802{1865), Evariste

Galois (1811{1832), and William Rowen Hamilton (1805{1865).

1.4.5 Number Theory

In order to do justice to a course in number theory, you must study its history. For example, Euclid's proof

of the infinitude of primes remains one of the most elegant demonstrations in all of mathematics. Virtually

every modern textbook in number theory duplicates Euclid's simplicity and beauty. In addition, the study

of Pythagorean mathematics introduces Plimpton 322 as an example of Babylonian mathematics. Since this
tablet predates Pythagoras by many centuries, it generates even greater interest. Recently, Eleanor Robson

has discussed the origin of Plimpton 322 in even more depth [23][24].
Pierre de Fermat is perhaps the most significant name in the history of number theory. Students are

intrigued by the fact that Fermat was not a professional mathematician but rather a jurist who did math-

ematics for fun. Students see that a great deal of mathematics in the 17th century was done through

correspondence, not in formal classroom situations. With regard to specific topics, after introducing Fer-

mat's Little Theorem, it proves profitable to discuss Euler's generalization. This sequence illustrates how

a mathematician from one century follows up on another's work from a previous one.

Arguably the most significant mathematical development of the twentieth century was Andrew Wiles'

proof in 1994 of Fermat's Last Theorem. Fermat's initial conjecture has a rich history all its own. For

example, Lame's incorrect proof of this result in 1847 led to the work done in ring theory by Kummer

and Dedekind. Students are fascinated how a mistake could actually lead to some important mathematical

results. Without the introduction of the historical context, this connection would be lost. And the way that
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Andrew Wiles devoted seven years of his life to proving Fermat's Last Theorem provides a modern day

illustration of mathematical dedication.

1.4.6 Other Courses

There are other courses that I have not taught that lend themselves to the use of historical material to

enliven their presentations. Some of these courses and some possible historical sources are presented in

the following list:

Real Analysis: A Radical Approach to Real Analysis [4 ] by David Bressoud; Real Analysis: A Historical
Approach [28] by Saul Stahl.

Topology: Handbook of the History of General Topology [2] by C.E. Aull, et.al. (Ed); History of Topology
[16] by T.M. James.

Statistics: Statistics on the Table: The History of Statistical Concepts and Methods [29] or The History
of Statistics: The Measurement of Uncertainty Before 1900 [30], both by Stephen Stigler; The Lady
Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century [25] by David Salsbury.

Linear Algebra: Resources for Teaching Linear Algebra [10] by D. Carlson et.al. (Ed)

Complex Analysis: Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass
[5] by Umberto Bottazini; Cauchy and the Creation of Complex Function Theory [27] by Frank
Smithies.

1.4.7 Assessment

Assessment of historical topics within a course can be difficult. For example, it may be possible to include

one or more historically oriented questions on some or all of the examinations offered during the course.

Essays or term papers are another option that can help determine student understanding of the overall role

of the history of mathematics in whatever area is being discussed.

1.4.8 Where do you find this stuff?

You can start by choosing a good survey text in the history of mathematics. Some examples include Burton

[6], Calinger [8], Cooke [11], Grattan-Guiness [15], and Katz [17]. As for original sources in mathematics,

some suggestions include Calinger [9], Smith [26], and Struik [31]. The text by Dunham [13], while not

exactly a collection of original sources, studies the work on Euler in some depth. The text by Laubenbacher

and Pengelley [19] offers another look at original sources. But perhaps the best suggestion is just to READ!

Read a lot of varied materials; there is a great deal out there.

You can find many books about specific mathematical topics that would be most appropriate for the

course in question. Dunham's book [13] on Euler already has been mentioned. Possible references for a

course in probability and statistics would include the books by David [12] and Stigler [30]. Some textbooks

contain more historical material than others. For example, Tattersall's recent number theory text [33] is

rich in historical content and Stahl's text in abstract algebra [28] also takes the same direction. Historical

content is one thing to look for when choosing a text for a course. And there is always the internet; who

knows what you might find if, for example, you were to enter \history" along with some mathematical

term in your favorite search engine.
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1.4.9 Conclusion

Introducing historical content into the courses beyond calculus can be a great deal of work and must

be done carefully. It is important that the historical topics not appear to be thrown in just to fill time.

Historical content should be used to motivate what is to come or, somewhat less often, to explain what

has happened. For example, in the graph theory course described above, Euler's paper was discussed very

early in the course, before the students had a clear view of exactly what a graph is. After all, that is how

Euler saw it. Similarly, the discussion of Pascal's paper in combinatorics takes place at the very beginning

of the material on the Binomial Theorem. Students must view a subject's history as an inherent part of its

study.

Student reaction to the inclusion of historical content has been very positive. Reactions have varied

from simply \That's interesting!" to \It made the mathematics more interesting." In general, students seem

to find courses taught this way more interesting and less dry than one using a more traditional approach.
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1.5.1 Introduction

At many institutions, the standard transition for undergraduate students from the calculus sequence to upper

level courses in mathematics involves a proofs course. One of its purposes is to mature undergraduate

students and change their perspective from problem solving to theorem proving. In such a course, students

learn about the abstract nature of mathematics while at the same time learning how to construct basic

proofs, how to read mathematics, and how to write mathematics. Of course, it is impossible to teach how

to prove without proving something! Proofs courses often introduce concepts and topics from a variety of

mathematical fields, thereby providing a sample of advanced pure mathematics.

A survey of some recent textbooks designed for proofs courses indicates the wide variety of topics used

to introduce the concept of proof. For example, Schumacher [11], Eisenberg [4], and Fletcher and Patty [5]

focus on number theory, axiomatic approaches to examining the real numbers, and the cardinality of sets.

Rotman [10] offers less of a sampling of higher mathematics, but grounds the proofs in mathematics

more familiar to students, including geometry, trigonometry, and properties of polynomials. Of course, the

treatment is much more precise and rigorous than the students may have seen and does develop and use

more advanced mathematics in these more familiar areas. D'Angelo and West [16] provide a more exten-

sive sampling of advanced mathematics, including discrete mathematics (probability, combinatorics, graph

theory, and recurrence relations) and continuous mathematics (sequences, series, continuity, differentiation,

and Riemann integration). All of the aforementioned texts have chapters or appendices that introduce

elementary set theory, induction, the properties of functions and relations, and equivalence relations.

Despite the notion that a proofs course contains a stable of techniques used to prove different assertions,

not all of the texts include chapters on proof techniques, quantifiers, logic, etc. There are other texts
that focus on the processes of proving and writing mathematical results. These include Solow [14] and

Velleman [15]. In particular, Velleman [15] breaks the process of proving a result into smaller pieces and

discusses how scratch-work evolves into the final wording of a proof.

There are a number of takes on how to prepare students for upper level mathematics. Like the afore-
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mentioned texts, our proofs course introduces students with a calculus background to standard techniques

of proof through different topics in mathematics. Motivated by our attendance at an NSF workshop on

Project InterMath, we decided that using the transition from discrete to continuous mathematics would

provide a good setting for a proofs course at the sophomore level. The mathematical topics in the course

come from difference equations, differential equations, and elementary linear algebra. However, rather than

consider the course as a sampler of advanced pure mathematics courses, we view our course as a sampler

of the many applications of mathematics.

For our institution, we believe that the proofs course should not only enhance the ability of our

students to communicate verbally and through writing but also contain a heavy technological component

and exploratory aspect. We want students to be able to make conjectures and have an experience that

introduces them to the process of research. As for the mathematical content of the course, we considered

what materials we wanted our students to know before they entered our upper level courses. In this article,
we not only describe the course, but also give the background of our institution and how this course was

designed to solve certain problems in our program. By design, the proofs course offers a sampling of the

different majors and programs offered in our department. Also, since most of the active research faculty

at Montclair work in applied mathematics, the course provides an opportunity for students to learn about

the research areas of faculty and to be better prepared to pursue undergraduate research.

The course ran as an elective in academic years 2003{2004 and 2004{2005. After undergoing evalua-

tion in spring 2004, the mathematics faculty voted to support making the course required for mathematics

majors as part of a six credit increase in the total number of mathematics credits taken by our majors.

Although the transitions course does not have a long history at Montclair, much of the content for the

course has been used by the authors in courses in Calculus I/Discrete Dynamical Systems, Game Theory,

and Linear Algebra at the U.S. Military Academy at West Point, in Game Theory, Differential Equations,

and Mathematical Modeling at Montclair, and in Differential Equations at Rutgers. This article includes

an outline of the course and provides examples of some of the course content. We conclude by discussing

how to adapt our course to another institution, as well as ruminating on the purpose of a proofs course

with suggestions on how to develop a course tailored to other constraints.

1.5.2 Fitting the Proofs Course into the Institution

Montclair State University's Department of Mathematical Sciences graduates about 30 majors in mathe-

matics every year. Approximately 35% of our majors are transfer students from other institutions, primarily

from the local community or county colleges of New Jersey. A number of our majors begin by taking

remedial courses in mathematics|typically one semester of Pre-Calculus.

Table 1.5.1 gives an outline of the typical mathematics courses our majors take. We have two mathe-

matics streams|Mathematics and Applied Mathematics|the latter being further sub-divided according to

specialization into Track I (Discrete Applied Mathematics and Operations Research) and Track II (Statis-

tics). The minimum required credits in mathematics for a typical student majoring in mathematics is 40

while a student majoring in the applied mathematics concentration takes 49; c.f. Table 1.5.1. The total

credit requirements for our majors is specified in Table 1.5.2. Additional mathematics courses are chosen

as free elective requirements by the students(see last row of Table 1.5.2).
The only courses that all majors take at the freshman/sophomore level are the Calculus sequence and

Linear Algebra. Many students take the Calculus courses off sequence (beginning Calculus I in the spring

of their freshman year) because they take Pre-Calculus in the fall of their freshman year. These students

may take Calculus III and Linear Algebra concurrently to catch up in the spring of their sophomore

years. Despite the emphasis on taking these courses by the end of the sophomore year, some students take



1.5 A Proofs Course that Addresses Student Transition to Advanced Applied Mathematics Courses 41

All Majors (19 credits)

Calculus I, II, III + Linear Algebra + Probability
Mathematics Applied Mathematics (9 credits)

(9 credits) Foundations of Computer Science I + II
Foundations of Introduction to Mathematical Modeling

Computer Science I Specialization

Advanced Calculus I Track I (9 credits) Track II (9 credits)

Foundations of Modern Algebra Discrete Math Statistical Methods
Operations Research I Statistical Computing
Operations Research II Mathematical Statistics

At least 4 electives At least 4 electives At least 4 electives

(12 credits) (12 credits) (12 credits)

Major requirements (Mathematics courses)

.19 C 9 C 12/ D 40 credits .19 C 9 C 9 C 12/ D 49 credits

Table 1.5.1. Required and elective (mathematics) courses for Mathematics and Applied Mathematics Majors at Montclair
State University

Linear Algebra in the fall of their junior year while also taking more advanced courses. Montclair State

University's Calculus sequence is fairly traditional with nods to calculus reform. All Calculus courses use

the Larson, Hostetler, and Edwards [8] text. The department policy is for all students to have a TI-86

calculator. Students are allowed to use their calculators in lectures, on quizzes, and for exams. Faculty

are expected to incorporate the graphing calculator into their lectures. Because the department does not

require group work or written assignments in the Calculus sequence, student exposure to these pedagogical

devices is largely instructor dependent. It is possible for students in the higher-level courses to have had

no experience with group work, exploration, or writing.

From this point onward, we use the phrase higher level courses to refer to any course beyond the
required courses of the Calculus sequence (Calculus I{III), Linear Algebra, and Probability. Because some

higher level courses are offered every term while some are offered every year, and because these courses

typically do not have pre-requisites other than some of the five aforementioned courses, the background

of students in the higher level courses can vary dramatically. In any given course, there may be students

in the last term of their undergraduate careers as well as students who are taking their first higher level

courses. The proofs course decreases the degree of variability of mathematical preparation of students in

higher level courses.

Some of the key points about the knowledge, preparedness, and maturity of our students are listed

below:

� Almost all our students taking higher level courses have had no exposure to proofs (except in their
Linear Algebra class for which some students receive transfer credit).

� Due to the way our required courses are structured, students typically do not have a chance to get
abundant practice with descriptive writing projects.

� Our students have little or no experience with computer algebra systems (for example Maple) or
spreadsheets (for example Excel).

� The minimal knowledge base of our students in higher level courses is limited and varies widely.
� Our students can graduate with their only exposure to differential equations being the brief reference
to separable equations in calculus.

� Although students are introduced to applications in Calculus I and II, they are not exposed to a more
diverse set of applications of mathematics until they enroll in higher level courses. At this time, they
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already may have made decisions about what classes to take and whether or not to add a concentration

in either pure or applied mathematics.

The proofs course is designed to address most of the issues mentioned above. Before the introduction

of the proofs course, any student with the prerequisites of the calculus sequence and linear algebra could

take any of the higher level courses. Hence, the mathematical maturity and experience of students in

these courses varied greatly. The introduction of a new sophomore level prerequisite increases the minimal

experience of the students in the higher level courses. Also, since a number of our transfer students take

linear algebra at other institutions, the proofs course ensures that students in the higher level courses have

been introduced to proofs, applications, and exploration.

Students in the proofs course are introduced to the rudiments of writing proofs early in the term. This

is achieved by introducing proofs in the context of difference equations. For example, we use induction to

prove the form of a general solution to a second order linear homogeneous difference equation. During this

process, the students are encouraged to explore the structure of the general solution using Maple or Excel,
conjecture the form of the solution, and then prove their conjecture using induction. The close interplay

between exploration, conjecture, and proof forms a structure which is reinforced throughout the course as

new topics are introduced.

Since Montclair does not have a sophomore-level differential equations course, some of our graduates

have only the limited exposure to differential equations that they received in the calculus sequence. The

proofs course gives the students a better idea of the usefulness of differential equations and the elementary

solution techniques. Our course is designed to introduce students to applications of mathematics to real

world problems at an early stage by using difference and differential equations as modeling tools. This

course thus serves as an advertisement for careers in mathematics and for the different courses and programs

in our department.

Most of our mathematics majors intend to become high school mathematics teachers. Montclair has a

strong Mathematics Education group in the department, and entrance into the teacher education program

for students majoring in mathematics is competitive. Many students who decide to major in mathematics

because they want to teach find that they are not interested in the teacher education program. It is our

belief that some of these students decide that they want to teach because they like mathematics but are

unaware of other career opportunities.

By introducing a variety of applications, the proofs course demonstrates that mathematics is a tool

that can be used to model and solve problems in different fields. The proofs course also provides an

opportunity to introduce students to the areas of applied mathematics in which the faculty are currently

active. By selecting applications that are germane to the research of the faculty, the students get to know

what the faculty are doing and learn about opportunities in undergraduate research. A handful of faculty

at Montclair are involving undergraduates in their research, but the common complaint is that students

become involved in the research too late in their undergraduate careers.

1.5.3 Outline, Description, and Philosophy

The prerequisite for the proofs course is two semesters of calculus. The course material emphasizes

exploration, applications, technology, and proofs. It combines topics from Discrete Dynamical Systems,

Linear Algebra, and Differential Equations with a strong exploratory and writing component. Students are

required to work in groups and turn in projects throughout the term, culminating in a capstone project at

the end of the course. Many of the applications are taken from Interdisciplinary Lively Application Projects

(ILAPs) by Arney [1]. ILAPs originated at the United States Military Academy at West Point through the
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Mathematics major Applied Mathematics major

Major requirements (mathematics courses) from Table 1

40 credits 49 credits

Collateral course requirements (non{mathematics courses)

8 credits 7{9 credits

General Education requirements (non{mathematics courses)

46 credits 46{48 credits

Free elective requirements (mathematics (or other) courses)

26 credits 14{18 credits

Table 1.5.2. Mathematics, Collateral, General Education, and Free elective requirements for Mathematics and Applied
Mathematics majors at Montclair State University

interaction of the mathematics department with the science, engineering, and social science departments.

ILAPs are integrated, student-centered projects linking mathematics with partner disciplines.

In addition to the group projects, students are required to conjecture results relating to the topics being

covered through exploration and to write detailed and comprehensive proofs individually. Approximately

half the class time is spent on exploration while the other half is dedicated to rudimentary proof techniques.

Our philosophy of using exploration as a preamble to mathematical rigor and proof has been explored and

used in proofs courses before. During the 1990's, Mount Holyoke [9] developed a bridge course titled

Laboratory in Mathematical Experimentation. Similar to our transitions course, this course is taken by
all mathematics majors at the beginning of their sophomore year and the prerequisite is two semesters of

calculus. The course at Mount Holyoke lets students learn a wide range of topics in mathematics through

discovery and experimentation. The students, working in small groups, are encouraged to explore topics,

make conjectures, and then construct arguments in support of those conjectures. The preface in [9] states

that

Students who have taken the Lab course are more likely to ask questions and look for patterns,

to formulate arguments clearly, and more likely to dive in and mess around with a hard problem.

Moreover, students who have taken the course do better in Real Analysis and Abstract Algebra

than students who have not.

The Mount Holyoke course focuses on proofs and pure mathematics through exploration. The spirit of

our course is very similar to the Mount Holyoke course but our course is centered on proof and exploration

in applied mathematics.

The ILAPs form a collection of engaging problems which interest and even excite the students. Our

course is designed to use the students' curiosity about these applications as a starting point to help them

learn the value of exploration, to guide them into forming conjectures from their explorations, and to teach

them how to use mathematical reasoning to prove their conjectures. D'Angelo and West [16] mention that

the inherent difference between the focus on computation in lower level courses and on attention to careful

exposition in the higher level courses presents a major challenge to many students. Various proofs and

transition courses have different approaches to address this challenge. These approaches are usually based

on the focus and specific needs of the institutions where the courses are taught. The lack of a required

differential equations course at Montclair State University and the attempt to attract more students who will

be interested in applications of mathematics led us to our take on the transition course. We also schedule

faculty visits throughout the term during which a faculty member has 15 to 30 minutes to loosely explain

her/his research to the class. This fosters a sense of community, lets students meet other faculty members,

and helps recruit students for undergraduate research projects.

We now give an outline of the specific topics covered in the course:
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Weeks 1{2: Review sequences from Calculus II. Introduce Discrete Dynamical Systems. Examine first-

order, linear homogeneous difference equations. Explore numerical solutions and their long-term be-

havior using Excel. Introduce a detailed application through an ILAP (for example, saving to buy a

car).

Weeks 3{4: Conjecture solutions and introduce induction to prove conjectures. Analytically solve differ-

ence equations. Continue to apply difference equations to model real-world behavior. Assign the first

project. Faculty visit #1.

A specific example on the use of induction to prove the general form of the solution to a second-order,

linear homogeneous difference equation is given in the next section. The example illustrates the exploration
leading to conjecture leading to proof structure of our course. During Weeks 2 and 3 the students explore
specific examples of difference equations. In particular, they use spreadsheets (for example Excel) to study

the long term behavior of solutions and to conjecture the structure of general solutions. Finally, they prove

their conjecture rigorously. The proof is done carefully in class for at least one case (for example, when

the characteristic equation of a second-order linear homogeneous difference equation has distinct roots),

and the other cases are assigned as homework.

Weeks 5{7: Consider systems of difference equations by introducing elementary ideas from Linear Alge-

bra. Have students explore ideas about stability, eigenvalues, and eigenvectors using Maple. Develop
models to highlight concepts and applications.

Weeks 8{9: Use limits as a transition from difference equations to differential equations. Examine slope

fields with Maple. Assign the second project. Faculty visit #2.

This course uses the development of models to highlight concepts. A specific example from evolu-

tionary game theory is given in the next section. The mating strategies used by lizards in California are

modeled using discrete and continuous models. This provides an opportunity to illustrate the transition

and connection between difference equations, which is the main topic in the first third of the course, and

differential equations, which forms the last third.

Weeks 10{12: Consider first-order and second-order differential equations with constant coefficients.

Analyze a real-world application using Maple (for example, population models). Assign the capstone
project.

Weeks 12{14: Examine systems of linear differential equations including simple concepts of stability.

Compare discrete and continuous models using technology. Develop models of real-world phenomena

(for example, predator-prey models). Faculty visit #3:

Week 15: Small groups report on capstone projects.

The material on fundamental solutions of linear, homogeneous differential equations in weeks 12{14

serves as an illustration of the interplay between exploration, conjecture, and proof. The material is standard

and can be found in a variety of texts on differential equations such as Boyce and DiPrima [2]. We expand

on this interplay in Example 3 in the next section.

1.5.4 Some Specific Mathematical Content

Mathematical induction is often the first type of proof that is taught to students. To demonstrate the use

of induction, we provide the following example. Students in the proofs course use induction to prove that

solutions of a particular form are general solutions to linear, homogeneous difference equations. Notice

that this does not indicate that all solutions are of this form and therefore is not a proof that the general

solution to the difference equation is of a particular form.
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Example 1 Using induction to prove the form of a general solution to a second-order, linear homogeneous

difference equation:

Assume that the second-order, linear homogeneous difference equation is of the form a.n/ D
sa.n�1/C ta.n�2/ where s and t are constants and a is a function of n that satisfies the given recursive

relationship. The characteristic polynomial associated with the difference equation is x2 D sx C t .

Suppose that the characteristic polynomial has distinct roots r1 and r2. Then, the general solution to

the difference equation has the form a.n/ D c1rn
1 C c2rn

2 where c1 and c2 are arbitrary constants that are

determined by the initial conditions.

To begin this proof, we must first establish the base case, where a.0/ D c1r0
1 C c2r0

2 D c1 C c2 and

a.1/ D c1r1
1 C c2r1

2 D c1r1 C c2r2. Then we obtain

a.2/ D sa.1/ C ta.0/ D s.c1r1 C c2r2/ C t .c1 C c2/

D c1.sr1 C t / C c2.sr2 C t / D c1r2
1 C c2r2

2

where the last equality holds because r1 and r2 are roots of the characteristic polynomial.

To prove the general case by induction, assume that a.n/ D c1rn
1 C c2rn

2 for nonnegative integers less

than or equal to n. By substitution, it follows that

a.n C 1/ D sa.n/ C ta.n � 1/

D s
�
c1rn

1 C c2rn
2

�
C t

�
c1rn�1

1 C c2rn�1
2

�

D c1

�
srn

1 C t rn�1
1

�
C c2

�
srn

2 C t rn�1
2

�

D c1rnC1
1 C c2rnC1

2 ;

where this last equality follows by substitution since r1 and r2 are the roots of the characteristic polynomial.

Hence, by induction, if the roots are distinct, then the general solution is a.n/ D c1rn
1 C c2rn

2 .

Suppose that the characteristic polynomial has a repeated root, r . The general solution to the difference

equation has the form a.n/ D c1rn C c2rnn where c1 and c2 are again arbitrary constants that are

determined by the initial conditions. The base case is established in the same way as it was above. To

prove the general statement by induction, assume that a.n/ D c1rn Cc2rnn holds for nonnegative integers

less than or equal to n. Since the root is repeated, the characteristic polynomial is .x � r/2 D x2 � sx � t .

This implies that t D �r 2 and s D 2r . By multiple substitutions, it follows that

a.n C 1/ D sa.n/ C ta.n � 1/

D s
�
c1rn C c2rnn

�
C t

�
c1rn�1 C c2rn�1.n � 1/

�

D c1

�
srn C t rn�1

�
C c2

�
srnn C t rn�1.n � 1/

�

D c1

�
2rnC1 � rnC1

�
C c2

�
2rnC1n � rnC1.n � 1/

�

D c1rnC1 C c2rnC1.n C 1/:

Hence, by induction, if the roots are repeated, then the general solution is a.n/ D c1rn C c2rnn. The

entire proof is then complete.

We consider two formulations of the same biological model of the competitive mating strategies of

lizards in California. This example was motivated by an article in The Economist [7] that in turn reported
on an article in Nature by Sinervo and Lively [13]. A more complete comparison of the differences between
the discrete and continuous approaches appears in Weibull [17] and has been successfully used in game

theory courses by Jones to focus on the subtleties of modeling dynamic behavior. This example not only

demonstrates the applicability of mathematics to model reality but also introduces students to areas of

research (mathematical biology and game theory) in which Montclair faculty are active. A short discussion

on implementation and pedagogy follow the next example.
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Example 2 An application to evolutionary game theory/biology that depends on the discrete or continuous

formulation:

Rock-Paper-Scissors or Roshambo is a two-player game with no clear choice of which of the three

options is best to employ. Rock crushes scissors, paper covers rock, and scissors cuts paper. The play results

in a tie if both of the players select the same action, e.g., rock versus rock. If players in a population only

play one of the three alternatives and are randomly matched with an opponent, then the optimal play would

be to play the strategy that defeats the most frequently played action. Without such frequency information,

it is not surprising that the best strategy is to randomize between rock, paper, and scissors, playing each

with probability 1
3
. What is surprising is that Rock-Scissors-Paper models the mating strategies of lizards in

California. As reported in Sinervo and Lively [13], male lizards with different colored throats use different

mating strategies and pass their strategies to their similarly colored male offspring. The relationship between

the strategies employed by the lizards is the same as the relationship between the strategies of playing

rock, paper, or scissors in Roshambo. That is, there are three strategies and each strategy becomes more

successful when another strategy becomes more frequent. For a more detailed explanation of the strategies,

placing them into the context of the actual practices of the lizards, consider Sinervo and Lively [13] or

the website [12].

When a mating strategy becomes more successful, it results in more offspring of the lizards that employ

the strategy. The evolutionary process can be modeled both discretely and continuously. We consider the

discrete process first. We revert back to Rock-Paper-Scissors to discuss the evolutionary process. Let

.a; b; c/ where a C b C c D 1 and a; b; and c � 0 represent the percent of the population at time n

playing the game. The generation of the population at time n C 1 depends on the population distribution

at n. How the population evolves depends on the relationship between a, b, and c. Specifically, the rock

players tie against one another, lose against paper players, and win against scissors players; this occurs

with probability a, b, and c respectively. A player receives 2 points for a win, 1 point for a tie, and 0

points for a loss. Mimicking evolutionary processes, the success of players using a strategy against the

population at time n determines the number of offspring who use the strategy at time n C 1. Rock-Paper-

Scissors players receive a C 2c, b C 2a, and 2b C c points respectively. Since the sum of all points is

a C 2c C b C 2a C 2b C c D 3.a C b C c/ D 3, the distribution of the population at time n C 1 is

�
a C 2c

3
;

b C 2a

3
;
2b C c

3

�
:

Hence, the evolutionary process can be viewed as a Markov chain or system of difference equations

where the population at time t is given by Œa.n/ b.n/ c.n/�T and the next generation can be determined

by matrix multiplication: 2
666664

1
3

0 2
3

2
3

1
3

0

0 2
3

1
3

3
777775

2
666664

a.n/

b.n/

c.n/

3
777775

D

2
666664

a.n C 1/

b.n C 1/

c.n C 1/

3
777775

:

As long as the initial population consists of nonzero populations, the distribution tends to
�

1
3

1
3

1
3

�T
.

The matrix describing the evolution of the population is doubly stochastic, because all rows and columns

sum to 1, see, e.g., Isaacson and Madsen [6]. All doubly stochastic matrices of dimension m have the

m-dimensional vector with all entries 1
m
as a fixed point or equilibrium vector. This vector is unique

and attracting if the matrix is also ergodic [6]. As the matrix above is ergodic, students can arrive at the

equilibrium vector by iterating the matrix. Students can plot the long-term behavior using Excel or Maple

and see that the vectors converge to
�

1
3

1
3

1
3

�T
.
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The above depiction of evolution in a society of Rock-Paper-Scissors players is by finite replicator

dynamics, as described in Weibull [17]. However, the evolution can be modeled continuously. Let the

current population be given by Œa b c�T where a, b, and c are functions of time. For s 2 fa; b; cg, the
growth rate s0

s
of the portion of the population using strategy s equals the difference between the strategy's

current payoff and the current average payoff in the population. The rock strategy's current payoff is given

by a C 2c; the paper strategy's current payoff is b C 2a; the scissors strategy's current payoff is 2b C c:

These are calculated as before. The current population Œa b c�T receives on average a payoff of

a.a C 2c/ C b.b C 2a/ C c.2b C c/ D a2 C 2ac C b2 C 2ab C 2bc C c2 D .a C b C c/2 D 1:

A little algebraic manipulation yields a0

a
D a C 2c � 1 or a0 D .a C 2c � 1/a. Similarly, for b and c the

system of differential equations becomes

a0 D .a C 2c � 1/a

b0 D .b C 2a � 1/b

c0 D .c C 2b � 1/c:

Once again, the vector
�

1
3

1
3

1
3

�T
is an equilibriumor fixed point. However, unlike the discrete version,

where populations converge to the fixed point, in the continuous model, the vector is neither attracting nor

repelling. Indeed, it is a center and trajectories of Œa.t/ b.t/ c.t/�T orbit around the equilibrium. Using

Maple, students can plot the trajectory of the orbits on the simplex

S D f.a; b; c/ j a C b C c D 1I a; b; c � 0g:

Pedagogically, the discrete version is introduced earlier in the term (see Weeks 5{7 in the outline).

The data presented in Sinervo and Lively [13] and on the website [12] shows oscillatory behavior and

the population does not converge to the equilibrium vector, as predicted by the discrete time model. This

provides an opportunity to discuss alternate ways to model the changes in the population. The differential

equation version of the lizard mating game is considered later in the term (see Weeks 12{14 in the

outline). By revisiting the evolutionary model of the lizard population, students learn that there is no

one way to model reality. This is also a good time to discuss how a model should be developed and

compared to reality. Similarly, the comparisons between the discrete and continuous models should focus

on the increased complexity of the continuous model and how simple models are valued as long as they

accurately model reality.

As an illustration of the material from the last portion of the course, we now explain how exploration

leads to conjecture and proof when examining linear, homogeneous, differential equations.

Example 3 Exploration, conjecture, and proof in linear, homogeneous differential equations:

Let us consider the simple second-order homogeneous equation y00 � y D 0 where y D y.t/ is the

solution. Building on their knowledge of the exponential function from Calculus, the students quickly verify

that y1.t/ D et and y2.t/ D e�t are solutions. Further exploration leads to the fact that any function in

the family y.t/ D c1y1.t/ C c2y2.t/, where c1 and c2 are arbitrary constants, is a solution. Computer

algebra systems such as Maple are used to visualize the solution family for a range of c1, c2 values. As a

next step the students explore and discover that specific solutions can be identified in the family by asking

questions such as \Can we identify the solution which passes through the point .0; 4/ and has a slope �2

at that point?"

The explorations parallel theorems which demonstrate the steps needed to make the transition from

computation to mathematical rigor. In what follows we assume the existence and uniqueness result for the
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initial value problem

LŒy� D y00 C p.t/y0 C q.t/y D 0 with y.t0/ D y0 and y 0.t0/ D y0

0;

where p.t/ and q.t/ are continuous functions for ˛ < t < ˇ. We do not delve into the details of this

involved existence theorem. However, there are examples of theorems which parallel the explorations and

use simple direct proof techniques. For example

Theorem 4 (Principle of Superposition) If y1 and y2 are two solutions of the differential equation
LŒy� D 0, then the linear combination c1y1 C c2y2 is also a solution for any values of the constants c 1

and c2.

The question can we find c1 and c2 so as to satisfy the initial conditions y.t 0/ D y0 and y 0.t0/ D y0

0

leads naturally to the definition of a Wronskian and the next theorem.

Theorem 5 Suppose that y1 and y2 are two solutions of LŒy� D 0, and that the Wronskian W.y 1; y2/ D
y1y0

2 � y0

1y2 is not zero at the point t0 where the initial conditions are assigned. Then there is a choice
of constants c1; c2 for which y.t/ D c1y1.t/ C c2y2.t/ satisfies the differential equation LŒy� D 0 and
the initial conditions y.t0/ D y0 and y 0.t0/ D y0

0.

Finally, the students are led to the theorem characterizing the general solution.

Theorem 6 If y1 and y2 are solutions of the differential equation LŒy� D 0, and if there is a point
t0 where the Wronskian W.y1; y2/.t0/ is nonzero, then the family of solutions y D c 1y1 C c2y2 with
arbitrary constants c1 and c2 includes every solution of LŒy� D 0.

Proving the last theorem requires more sophistication and maturity than the simple, direct proofs of

the previous two. In particular, the students see how the uniqueness of solutions plays a fundamental part

in the proof.

1.5.5 From Theory to Practice: Assessing the Outcomes of the Proofs Course

The authors received a grant (NSF Grant No. 0310753) from the National Science Foundation's Division

of Undergraduate Education to develop the proofs class as part of the Adapt and Implement Track of the

Course, Curriculum, and Laboratory Improvement (CCLI) Project (NSF-DUE-955414) and the Interdisci-

plinary Lively Applications Projects (NSF-DUE-9455980). It is organized in the spirit of Mount Holyoke's

Laboratory in Mathematical Experimentation (NSF-DUE-9554646). Although designed to be a required

course for sophomores, the course ran for the first time as an elective in Spring, 2004. Six of the 18

students enrolled in the class had taken upper level courses before enrolling in the proofs course, although

none of them had taken our upper level courses in either algebra or analysis. These six students completed

additional assignments to receive upper level elective credit, allowing the course to count for their major.

The other twelve students had taken Calculus I and II and some were concurrently enrolled in Calculus

III and/or Linear Algebra. These students received free elective credit and did not receive major credit.

We were able to team teach the course in Spring, 2004. Both Jones and Mukherjee were present for all

classes minus the occasional missed class due to illness. The class met twice a week for 75 minutes over

the 15 week semester. The class met in a room with a wireless hub, and we brought a computer cart of

laptop computers into the classroom. Students accessed the Blackboard course management system using

a wireless internet connection. The laptops had the latest versions of Microsoft Excel and Maple. Both of
these software programs also were available in a public computer lab.
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Students were assigned three group projects over the course of the term. These projects involved the

mathematical modeling of problems involving things like mortgages, gasoline prices, and lizard populations.

We adapted the technical report format of Miller's Technical Report Format and Writing Guide in [1] so

that students were clear on the expectations for the written reports. Each project had an oral component

where the students had to present their results. For the first two presentations, the teams (of two students)

were given ten minutes to recount their results. Students were asked questions about their presentations

by the instructors as well as by other students in the class. In general, we were pleased with the students'

presentation skills, both written and oral. The oral presentation skills evolved significantly over the term

and students were aware of their peers' abilities and techniques and would mimic successful styles. Even

though we had suggested that the students summarize their results and expound on one aspect in detail,

students recognized that successful presentations used less content on overhead or PowerPoint slides and
did not try to present too much material.

We designed the first project to be straightforward so that students could focus more on the pre-

sentations than the mathematics of the project. While this approach was successful in that the students'

first presentations were better than expected, we did miss an opportunity to highlight a more extensive

application or ILAP. We spent time in class reading mathematics but we did not have an assignment that

highlighted the importance of reading mathematics. Although we have used similar ideas in other classes,

we did not motivate good writing through the reading of well-written mathematics. In Fall 2004 and Spring

2005, we required students to read a well-written mathematics article and answer questions on exposition

before starting the first project.

During our first run through the course, we required students to turn in weekly homework assign-

ments.We graded selected problems from these assignments and then discussed their solutions. We required

students to write every homework problem well, although only certain homework problems required the

students to write proofs. Although we did highlight the homework problems that required proofs, we did

not divide the homework into two parts. We think that it is useful to specify which problems the students

need to write up carefully. Subsequently we still assigned many homework problems, but specified which

solutions were to be graded for their presentation. This allowed the students to concentrate more on their

writing. To increase the oral communication skills of the students, we also required students to discuss the

homework problems in class.

For the first two projects during spring 2004, it was possible for groups to emphasize the same

mathematical content in their presentations. For the third or capstone project, each group had 15 minutes

to give the details of a specific portion of the project. Each group was assigned specific content to explain,

thereby eliminating any repetition in the project presentations. The final presentations were open for other

faculty and students to attend. Besides the two faculty members from the class, an additional six faculty

members attended the students' presentations of the capstone project. The student interactions during the

capstone project presentations were ideal. Not only did students ask other groups questions during their

presentations, the students also helped out their classmates when a group was unable to answer a question.

We continued this practice during the 2004{2005 academic year.

We used Microsoft Excel and Maple worksheets to introduce concepts in the course. We projected the
worksheets onto a screen at the front of the class and had the students follow along on their laptops. The

worksheets and demonstrations showed the power and utility of the software programs and the projects

required the students to use the programs to analyze the applied problems. All Excel files and Maple
worksheets used in class were permanently stored on the Blackboard site for the course. These worksheets

formed a reference library for the students to access when recalling the syntax of the Maple commands.
Much of the student exploration was accomplished through their use of the software programs. We asked

leading questions of the students and had them explore the consequences through Excel andMaple. Students
were able to determine what would happen for ranges of parameter values by considering the outcome
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for different parameter values and then trying to understand why the outcomes occurred. This hands-on

approach was useful in getting the students to make predictions and conjectures.

We introduced techniques of proof in 15 to 20 minute asides throughout the term. We assigned home-

work for the students to practice each proof technique. We introduced the proof techniques with content

that had been introduced previously. The students thus were more comfortable with the content and were

able to concentrate on the technique itself. For spring 2004, this was successful with direct proof and proof

by induction, but we did not have the class time as the semester progressed to spend as much time on

proof techniques as we would have liked. We altered this sporadic approach during the following terms

by spending whole days on proof techniques early in each term.

The outline presented is ambitious. Implementing the syllabus was feasible, but we believe it is valuable

to spend more time discussing proof techniques and continuing the exercises in exploration. The intangibles

of exploration and discovery are more important than covering all of the aforementioned content for the

course. We decided not to cover higher-order linear difference questions but instead to model higher-order

linear difference equations as systems of first-order difference equations. Mark Parker, a mathematician

from Carroll College and a co-organizer of the NSF-sponsored Project InterMath Workshop that motivated

our proofs course served as an external evaluator of the grant. Some of the above suggestions for improving

the course were given by Professor Parker as part of the evaluation process.

Along with the internal evaluator of the CCLI grant, Gideon Weinstein, a mathematics educator from

Montclair State University, the authors helped design pre-class and post-class surveys to collect quantita-

tive and qualitative data about the proofs course. Data from the surveys, as part of Weinstein's internal

evaluation, and additional information on the course and its future iterations can be found at the website

http://www.csam.montclair.edu/~jonesma/transitions.html

1.5.6 Modifying this Course to Other Institutions

To directly apply our twist on a proofs course to another institution seems to require the conditions present

at Montclair. In particular, the program should not offer a sophomore-level differential equations course

and the program or department should be centered on applied mathematics. Of course, picking specific

applications to match the research interests of the faculty depends on the faculty. The applications can

be changed according to the program or the individual faculty. However, the transition course could be

used in lieu of a sophomore level differential equations course in a department that also offers an upper
level course in ordinary differential equations. The students then would receive some of the content taught

in a typical sophomore-level differential equations course while gaining a broader perspective about what

mathematics is about.

For institutions with more of a pure mathematics bent, the spirit of the proofs course can still be

implemented with topics that coincide with faculty and program interests. This same benefit of having the

students exposed to faculty research areas can increase the likelihood of students being ready to pursue

research at an earlier point in their educational career. The exploratory aspect and use of technology can still

be employed for a proofs course that surveys advanced pure mathematics. For example, there are software

packages to demonstrate abstract algebra (e.g., the GAP software) and offer students an opportunity to

explore and conjecture proofs.

1.5.7 Conclusion

The liberating idea of this article is that a proofs course can be tailored to fit the nuances of a specific

program and does not have to be a survey of pure mathematics or an introduction to logic. Teaching students
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about how to read and write proofs can be accomplished regardless of the mathematical content. As opposed

to other more advanced courses, proofs courses are less motivated by content and more concerned with

providing an environment where students can explore and make conjectures and see how mathematics is

done as opposed to how it is learned. We chose to highlight applied mathematics to coincide with faculty

interests and the realization that few of our students go on to graduate school. If the population of students

at Montclair changes, our proofs course is easily adaptable to such changes.

Note: This material is based upon work supported by the National Science Foundation under Grant No.

0310753. Any opinions, findings, and conclusions or recommendations expressed in this material are those

of the authors and do not necessarily reflect the views of the National Science Foundation.
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Introduction

The second chapter contains five papers that describe approaches to core courses in the undergraduate

major that excite student interest while delivering solid mathematics courses. In the first paper, Jason

Douma of the University of Sioux Falls discusses how an abstract algebra course can be organized around

an open-ended research project. The project is not an application of material presented in class but rather

serves to motivate and generate the course content. In the same vein, Jill Dietz of St. Olaf's College used

a guided discovery approach to generate student input and ideas that eventually lead to a course in module

theory as a follow-up to an introductory course in abstract algebra. In both cases, students are expected to

be extremely active and, with appropriate guidance, develop the course material on their own. Both papers

contain a good deal of supplementary material to support implementation of the respective approaches.

This theme continues in the geometry article by Jeff Connor and Barbara Grover of Ohio University.

In this case however, the students are expected to generate axiom systems for both Euclidean and non-

Euclidean geometries, using technological supplements when appropriate. Likewise, Samuel Smith of

St. Joseph's University works to maximize student participation in developing a topology course that is

intended to appeal across the board and not just to students planning to do graduate work. The key in this

case is using an initial geometric approach to motivate the axiom structure that characterizes topology.

Students in an introductory course in real analysis must develop a solid understanding of continuity,

differentiability, integrability, and convergence in order to probe more deeply into the world of analysis.

At the same time, the course should not look like calculus with epsilon and delta proofs added. Stephen

Abbott of Middlebury College shows how this can be accomplished through a series of narrative tutorials

that are done by students working in groups. Once again there is an emphasis on student engagement in

the learning process.

The five papers in Chapter 2, while more course specific than their counterparts in Chapter 1, still

contain approaches that are adaptable in a variety of settings. They also continue the theme of encouraging

students to move beyond the bounds of the standard course content. They provide a useful contrast to the

papers in Chapter 3, which invoke concepts, materials, and methods that were not typical just a few years

ago.

55





2.1
Wrestling with Finite Groups; Abstract Algebra

need not be Passive Sport

Jason Douma

University of Sioux Falls

2.1.1 Introduction

Abstract algebra is fundamentally abstract. (Perhaps this is stating the obvious.) But must the teaching and
learning of abstract algebra take place in an entirely passive environment? Certainly not.

In the 2001 spring semester at the University of Sioux Falls, I structured an abstract algebra course

around a single open-ended research project. The project was not an application or assessment of material

already covered in class. This central project was intended to motivate and introduce much of the actual

course content throughout the entire semester.

The class project called for students to catalog the central product structures of all finite 2-groups

through order 32, and to articulate and prove a general statement about the central product structures of

all abelian 2-groups. Because the class was small (six students), all of the students were expected to carry

out the project as a single collaborative group.

The experiment appears to have been quite successful and could transfer well to other advanced

mathematics courses, especially if the class size is small. I suggest that there are at least three key

ingredients that should be present in the design and administration of your own project-driven course:

1) the semester project should be sufficiently open-ended to allow the students an authentic research and

discovery experience; 2) the project topic should be rich enough to trigger many of the concepts that are

essential to the course's syllabus; and 3) the instructor should be prepared to be flexible and responsive;

reading word for word from a detailed set of lecture notes would defeat the very purpose of a project-driven

course.

2.1.2 Objective

For many undergraduate mathematics students, a semester course in abstract algebra is perhaps their

first and most authentic taste of pure mathematics. Here students see some truly beautiful structures and

powerful theorems. In many ways the beauty, elegance, and purity of the objects we study in abstract

algebra must be credited to their essentially abstract nature. Indeed, it was in my first semester of abstract
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algebra as an undergraduate mathematics student that I first began to love mathematics, just as a poet loves
poetry or a musician loves music. Until that point, I saw myself as more of a mathematical technician:

capable and effective, but with no particular aesthetic attachment to the objects of my study.

However, the same abstractness that is capable of delivering such sublime elegance also seems to foster

a noticeable passivity in learning abstract algebra (and in other upper-division pure mathematics subjects).

All too often, the student's approach is to receive information from the teacher and attempt to intellectually

store this information in exactly the same form as its original presentation by the teacher. They treat the
content as if it were too brittle to withstand actual handling or use. Nadine Myers has provided an apt

description of this pattern [5]:

Many students of mathematics find abstract algebra to be the most difficult undergraduate course

they encounter. . . Even good students find themselves floundering in abstraction, struggling to prove

statements about mathematical objects that are themselves elusive and only superficially understood.

To the extent that this form of passive and superficial learning is present, the student is left with a less

than authentic understanding of the mathematics and a far less than authentic experience in the creative

process that generates and sustains mathematics.

This article outlines one effort to encourage abstract algebra students to come into meaningful contact

with their objects of study, to handle these structures, and even to wrestle with them during the course of

a semester.

2.1.3 Background

The University of Sioux Falls is a small private liberal arts college affiliated with the American Baptist

Churches. Enrollment has grown to about 1400 students, just under 1000 of whom are full-time undergrad-

uates (we do have graduate programs in education and business). The two largest majors on campus are

in professional fields (business and education), but the university does maintain a healthy core of students

majoring in one or more of the arts and sciences.

Mathematics majors at the University of Sioux Falls form a close-knit group and students typically

complete all of their upper-division courses with roughly the same band of classmates. Enrollment in upper

division mathematics courses is modest but stable, generally between 5 and 12. Students are comfortable

working together both in and out of class and justifiably expect continued interaction with faculty and

classmates beyond the class meeting times.

Prior to the 2001 spring semester, our abstract algebra course consisted of the usual survey of essential

topics in abstract algebra. Roughly half of the semester would concentrate on group theory with the balance

devoted to rings and fields, including the associated topics concerning number theory and divisibility. A

second semester of abstract algebra is not offered on a regular rotation at USF (only as a special topics

course or directed study). Consequently, this traditional sampling of topics has been the extent of most of

our students' contact with abstract algebra.

The abstract algebra course takes on some of the characteristics of a capstone course at the University

of Sioux Falls. It draws on some of the content background from other courses (especially linear algebra)

and builds strongly on the modes of reasoning (proofs) developed in other courses. A significant research

project is typically included in the syllabus. Indeed, students often use their work in abstract algebra as a

springboard for the work they present in our Natural Science Colloquium.



2.1 Wrestling with Finite Groups; Abstract Algebra need not be Passive Sport 59

2.1.4 Searching for a New Approach

I began the planning process for this course with several familiar concerns and fine opportunities firmly in

mind. I wanted to find a way to counteract the gravitational pull of passive learning in this upper-division

course. I also wanted to provide my students with a meaningful, open-ended project that would give them a

more authentic experience with the creative process through which mathematics is developed and refined.

Ideally, such a project might lead to results that students could present (or publish?) in a more substantial

forum.

As acknowledged earlier, I also had some key assets at my disposal: a small class size and a collection

of students who were comfortable working together. Meanwhile I had also been culturing some questions

and curiosities concerning central product structures of groups. These questions had surfaced during the

course of my doctoral work but I had not found time or occasion to revisit them. Since central products

essentially are little more than a generalization of the direct product, it seemed that many of my questions

might be accessible to my undergraduate students. Here then was a collection of material that could serve

as the \meaningful, open-ended project" at the heart of the abstract algebra course.

The new course paradigm had taken its initial shape. The course would be built around a single,

common, open-ended project related to the central product structures of finite groups. (The precise wording

of the research problem is given in a later section.) Students would pursue the project collaboratively and

in the process they would learn about group structures by actually handling and dissecting these objects,

rather than merely hearing or reading about them.

Of course, this approach raised some concerns that would be familiar to anyone who has sought to

augment the level of interaction in their mathematics classes. In particular, the project would require a

substantial investment of precious class time. Furthermore, the project would have to be up and running

before the prerequisite knowledge is in place. A project of this scope could scarcely be addressed in a
single semester. If we were to wait until the fifth or sixth week to introduce the project, we might surrender

any reasonable hope of reaching even a tentative conclusion by semester's end. Clearly, this project could

not be a supplement to material already covered in class. There simply would not be enough time. Rather,

in some sense, the project would need to be the content of the course, even in the first weeks of the
semester.

Many of these changes would not come easily for me. I have always found it easier to add topics to

the course syllabus than to delete them. After all, there are always so many interesting topics to discuss

(especially in abstract algebra) and I cringed at the thought that my students might miss out on something.

I had also had mixed success with collaborative work in my other classes. In some cases, students did seem

to achieve a higher degree of ownership of their learning, but often it seemed as though their wanderings

were inefficient at best and aimless at worst. Nevertheless, the potential benefits of the new course structure

appeared to outweigh the apparent risks and sacrifices. I resolved to pare back my beloved syllabus and

trust more of the content development to the students themselves.

2.1.5 Allocating Time for the Project

To allow for appropriate attention to the project as an authentic vehicle for developing content, the syllabus

was designed so that class time could be apportioned into three equal parts.

1/3 scheduled lecture (independent of the project)

1/3 workshop time, when students would attend to the project together during class time

1/3 discussion and lecture motivated by the project
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(Retrospective note: In practice, I deviated a bit from this uniform distribution. The students quickly

demonstrated the ability to work productively together outside of class, and thus the actual distribution

of class time settled into something closer to (2/5, 1/5, 2/5) among the three categories.) Implicit in this

curricular plan was the assumption that the demands of the project itself would be able to motivate and

drive a great deal of the learning that was to take place in the coming semester.

As a concession to the demands of the project, coverage of rings and fields was scaled back to

approximately three weeks at the end of the semester. Students would still learn the terminology, key

examples, and important results from ring theory. However, most results would be presented without

proof, and the overall degree of rigor would be lower than that which was given to group theory. I viewed

this downsizing of ring theory as necessary, but not at all pleasing. Ring theory is every bit as important and

interesting as group theory. Many fine instructors and texts (e.g., Hungerford [4]) have placed ring theory

at the beginning of their abstract algebra course. Nonetheless, a substantial investment of time would be

required for proper development of the project, which happened to be in the area of group theory.

2.1.6 The Project Assignment

The essential idea that eventually evolved into the abstract algebra class project can be traced back a few

years to some of the work related to my dissertation [1]. While investigating automorphisms of direct

products of finite groups, I found that central product structures would play a key role in determining the

nature of the maps in question. A literature search revealed that even though the basic principles associated

with central products are simple and well understood, there is a dearth of published reference material

on the subject. Surely other mathematicians have thought about central products in the past, perhaps as

required in their own research. Nonetheless, little effort appears to have been made to document or compile

what is known about them. No equivalent of Thomas and Wood's Group Tables [6] appears to exist for
central product structures of groups.

Like others who had gone before me, I developed just enough understanding of central products to

address the research problem at hand. I did, however, make a mental note that there was more to be learned

in this area. In particular, this appeared to be fertile ground for undergraduate research. There were few

prerequisites (just basic group theory) and questions from this area were open-ended in the sense that there

was apparently no central, accessible source of answers to such questions.

The task of developing a research question for the abstract algebra class project had now been reduced

to specifying a set of directives that was modest enough to be addressed within one semester and yet

comprehensive enough to motivate much of the introductory group theory curriculum. The following

research problems appeared to accomplish a reasonable balance, and were presented to the class as their

common project for the semester.

Catalog and classify the central product structure of all finite 2-groups through order 32.

Seek and prove a more general result concerning central product decompositions of abelian 2-
groups.

For the sake of the reader with some interest or background in central products, I should clarify

that I adopted Gorenstein's characterization of the central product [3], which allows the overlap between

subgroup factors to be any subgroup of the group's center and not necessarily the entire center of the

group. This permits the central product to be viewed as a generalization of the direct product, where the

overlap between subgroup factors would simply be the trivial subgroup. The following definition serves

to clarify the distinction, since there is some ambiguity in the existing literature.
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Definition. A finite group G is a central product of normal subgroups

G1; G2; : : : ; Gn if G D G1G2 � � �Gn and ŒGi ; Gj � D 1 8 i ¤ j:

(Note that if x 2 Gi \ .G1G2 � � � cGi � � �Gn/ for some i , then the definition implies that x is in the center

of G .)

What we are saying here is that a group G is a central product of two of its normal subgroups H and

K if G D HK as an internal product and ŒH; K� D 1. Note that this definition implies that any elements

H and K have in common must be contained in the center of G . Thus an internal direct product is really

just a special case of the central product. (In this statement, ŒH; K� refers to the commutator subgroup

consisting of all commutators of h and k, where h is an element of H and k is an element of K.)

2.1.7 The Project as Source of Content

These research problems were unveiled on the first day of class with the understanding, of course, that

none of the directions would be intelligible at the very onset. The initial groundwork was laid in the

first class session by comparing the task at hand to other more familiar product structures that may be

used to organize and classify mathematical objects: factoring polynomials, prime factorizations via the

fundamental theorem of arithmetic, etc. With this basic motivation in place, students' attention naturally

turned to understanding what sort of product structures are being specified through the terminology in the
research problem. They needed to know what a finite 2-group is, what is meant by order, and certainly

what a central product entails. Each of these concepts, in turn, rests on other notions and terms that must

be developed in sequence. Thus, within the first two class sessions, the basic terminology and definitions

associated with group theory were introduced into discussion, just as they would be in a traditional abstract

algebra course, with one notable difference: the students were already viewing the material with an eye to

doing something with it. The demands of the project had motivated the development of the course content.
As the semester progressed, I attempted to keep a running list of the group-theoretic content motivated

by the project. By the end of the course, the list was fairly impressive.

� definition of group, subgroup, and element
� the concept of order for groups, subgroups, and elements
� examples of finite groups
� the use of group tables and subgroup lattices
� center
� fundamental theorem of cyclic groups
� normal subgroups
� internal products and central products
� cosets and factor groups
� direct products
� commutators and abelianizations
� Lagrange's theorem
� p-groups

� homomorphisms and isomorphisms
� kernel
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� first isomorphism theorem
� automorphisms and automorphism groups
� fundamental theorem of abelian groups
� generators and relations

This list contains most of the traditional group theory syllabus from a typical first-semester abstract

algebra course. Among the notable exceptions are permutation groups, alternating groups, Cayley's theorem,

and the orbit-stabilizer theorem. (Not surprisingly, permutation groups and related topics do not arise as

naturally in a project that is focused on finite 2-groups.) These important topics from group theory along

with all of the course's content from ring theory were introduced in a more traditional manner, independent

of the class project. We used Gallian [2] as our principal text, both for reference in many of the matters

related to the class project and for development of concepts outside the scope of the project. Thomas and

Wood [6] provided an essential reference for the detailed structure of each of the groups being studied.

Along the way, students also referred to a few tables and to results from my dissertation.

Much to my delight, there were days when the project motivating content paradigm worked to per-

fection. I recall one particular day when I walked into the classroom and was greeted by the question,

\So, are direct product decompositions of groups unique?" That students would have the insight to ask
this question on their own accord is pleasing enough, but what impressed me most of all was the sight

of these students genuinely interested in what the answer to this question might be. They were hanging
on my every word (and believe me, it was not due to anything extraordinary in my lecturing style). There

were other days when the class would update me on the status of their project, and their statements would

flow seamlessly into a discussion of some key concept from group theory.

Still, there were also many days when the students had trouble knowing which question to ask. They

were unable to anticipate what they needed next or could not identify the void that had inhibited their

progress. On these days, the project still motivated content in the sense that I was able to introduce material

that would help them on their way, but the exchange of information was somewhat more of a one-way

street.

2.1.8 Creative Output

There is a sense of pride and reward to be found for both the student and the teacher when the results of a

semester's toil amount to more than just numerical scores on assignments (and exams) that were concocted

as little more than assessment tools. We all long to produce something meaningful. Through their study
and labor, the students in this abstract algebra class were able to create something new and meaningful in

its own right.

Evidence of students' pride in their creative work can be found even in the names given to some of

the methodologies they developed.

The Birger Method (for ascertaining the orders of individual group elements when expressed as products
of elements from central product factors)

Mike's Six-Step Program (for checking whether a given external product of smaller groups is isomorphic
to a larger specified group)

It was clear from both the nomenclature and student attitudes that the class had taken ownership of

their work. Rather than following a preordained script or responding to exercises (as in an exam) that

had been handed to them, these students had produced something creative and meaningful from their own

efforts.



2.1 Wrestling with Finite Groups; Abstract Algebra need not be Passive Sport 63

Because their work had meaning and value beyond the context of the abstract algebra course itself,

the students were given opportunities to present their findings to broader audiences. Several USF under-

graduates attended the 2001 Math on the Northern Plains Conference at the University of South Dakota in

April, where one student presented a preliminary report on behalf of the class. For a few of the students,

including the presenter, this was a first experience with conference talks and proceedings. Later in the

semester, the class shared their results publicly with members of the campus community. Two students

from the class have also further developed ideas from the class project for presentation in the USF Natural

Science Colloquium. (All USF students majoring in any of the natural sciences are required to give two

research talks at the colloquium.)

Of course, the centerpiece of the students' creative output consisted of their actual findings in response

to the research problems. The class produced a collection of tables that listed and classified the central

product structures of each of the finite 2-groups of order 2k , where 1 � k � 5. Many of these structures

were indeed trivial; but even at these relatively low orders, there are a number of groups with subtle

central product structure. For example, there exists a group of order 32 (group 32/17, following Thomas

and Wood's indexing [6]) that can be expressed as three distinct central products: � 2b Z8, �2d Z8, and

D4Z8. In the first two cases, a copy of Z4, a proper subgroup of the center of the group, is shared between

the two factors. In the third case, the common elements make up a copy of Z2 from within the center of

the group. Clearly there is no direct equivalent of the Krull-Schmidt theorem for central product structures.

The students, through their active handling of these objects, had an immediate understanding of this fact

and the subtle consequences surrounding it. The class did find, in response to the second research problem,

that there is something similar to the Krull-Schmidt theorem in the case of abelian 2-groups. This was
presented as a theorem with proof in their final paper.

2.1.9 Assessing Student Development

The collaborative research project served not only as the focal point for student activity but also as the

focal point for assessment. Student development relative to the project was assessed through four vehicles:

a progress report completed by each student near the middle of the semester, the research paper, the public

research presentation, and a personal reflection submitted by each student at the end of the semester.

The progress report served as a device for evaluating individuals within the collaborative effort. Each

individual received a separate score on the progress report, based on their contribution to and understanding

of the project up to that point in the semester. This also serves as a mechanism for accountability and

early intervention if there were unacceptable disparities among individual contributions. To complete the

progress report, each student submitted a brief summary of the status of the research project, as well as

an evaluation of every member of the class (including themselves) in the four areas of reliability/attitude,

project leadership, content expertise, and product production. Table 2.1.1 shows the rubric used for the

evaluations. The header row indicates the points awarded for each rating. A student's score in each category

consisted of the sum of the individual ratings he or she received in that category, with the lowest and highest

ratings omitted.

All students in the class received a common score for the research paper itself. The public presentation

was graded in a manner that allowed for a combination of individual and common scoring. The personal

reflection paper was, of course, an individual effort.

In aggregate, the assessment related to the class project accounted for 40% of the semester grade. A

brief descriptive essay, take-home exams, and a one-on-one oral final examination constituted the balance

of the student assessment.
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Category 0 (poor) 2 (marginal) 4 (acceptable) 5 (superior)

Reliability

& Attitude

missed several meet-

ings or deadlines;

doesn't seem to want

to contribute

contributes occasion-

ally, but is unreli-

able or resentful of

responsibility

generally contributes

willingly, but has

missed one or two

meetings with good

reason

contributes positively

without exception

Project

Leadership

only acts when di-

rectly asked to do

so; seems unaware of

project goals

understands project

goals, but is usually

unable to identify the

\next step"

is able to articulate

the direction of the

project with assis-

tance from the group

astutely assesses

project status and

provides direction for

next steps

Content

Expertise

unable to discern cor-

rect conclusions from

false conclusions

can verify the work

of the group, but

rarely produces re-

sults independently

produces accurate

results when called

upon, sometimes

with assistance

identifies generaliza-

tions and structure

and provides reliable

computations

Product

Production

maintains only inac-

curate or incomplete

records of the group's

work

keeps personal copy

current, but adds little

to production of the

project document

valuable word pro-

cessor or data proces-

sor

provides vision for

concept and compo-

sition of the project

document or database

Table 2.1.1. Progress Report Rubric

2.1.10 Assessing the Course

The oral final examinations provided a source of comparative course assessment between the project-

centered course offered in the 2001 spring semester and a more traditionally formatted section of the same

course I had taught two years earlier. Both classes made use of an oral final examination with a similar set

of questions and prompts. (There was just one significant change in content: the exam from the traditional

course contained four questions from ring theory; the exam from the project-centered course featured two

questions from ring theory and two questions on the theory of central products. The remaining questions

from group theory were similar, if not identical, in both exams.) Both exams used the same rubric for

assigning points to the student's response. Both exams also offered up to four bonus points along the way,

with a total of 50 points possible.

While the possibility of some subjectivity in grading must be acknowledged, scores did improve

from the traditional section (n D 8, Nx D 42:5, s D 6:4) to the project-centered section (n D 5, Nx D
46:0, s D 3:0), although not significantly (p D 0:281), due in large part to the modest sample sizes.

Qualitatively, the students from the project-centered class appeared far more comfortable discussing these

topics spontaneously than their traditional class counterparts.

Student evaluations of the course were also positive, as reflected in comments such as these:

I really liked the way the lectures in class gave us the tools we needed in the project when we

needed them so we could see their application right away.

We accomplished much more together than we would have been able to alone. I think that this is

a great model to follow in the future.

Many other student comments were variants of the theme, \It was a lot of work, but I understand the

material more deeply as a result."

Most students did express concern that at times they felt they were working double shifts; continuing

work on the class project while also working just as hard to keep up with the textbook part of the

course. As is often the case with collaborative work, the students also felt exasperated in their efforts to
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coordinate schedules and find times to meet. These are legitimate concerns that perhaps could be addressed

more through adapting and clarifying expectations than through major changes in the course content and

structure.

In planning a course in which a central project would motivate much of the course content, I had hoped,

as one of the learning objectives of the course, that students would further develop their ability to identify

and articulate key questions that are pivotal to success in their work. By midterm, the group had begun

to ask such questions with greater frequency and sophistication than students in previous upper-division

courses I had taught. But as the semester progressed, it seemed that two or three students emerged as

spokespersons for the class. The remainder of the group was arguably as tacit in this context as they would

have been in a more traditional setting.

On the whole, it appears that student learning in the project-centered course was more active, deeper

(though perhaps a bit narrower), and more fulfilling than in a traditional abstract algebra course. I do

intend to continue this approach in future abstract algebra courses.

2.1.11 Conclusion

The instructor who designs and leads a project-driven course is taking a risk by breaking with traditional

(and comfortable) notions of control and coverage. However, the potential for authentic student engagement

is great enough to make this a risk worth venturing, subject to the availability of a few key factors.

Without question, the most critical element in the design of a project-centered course is the choice of

research problem. The instructor is hunting for a gem. The effective research problem must be modest

enough to be addressed within a single semester, comprehensive enough to motivate a substantial share

of the course content, and open-ended enough to provoke genuine student discovery. (Do note that open-

ended need not imply that the project topic is a recognized open question in the field.) Surely these topics
exist in crevices and under rocks throughout the mathematical landscape, not just in abstract algebra. The

instructor is perhaps most apt to recognize these gems in areas near her neighborhood of expertise. A

project-centered approach demands that the instructor anticipate how the project is likely to unfold and to

react wisely to unexpected developments. For these reasons, the project-centered approach is likely most

ideal for upper- division courses near the instructor's area of expertise. For the same reasons, I do not

feel qualified to recommend possible project topics for courses other than abstract algebra, although I am

confident that they can be found with the help of the instructor's insight, creativity, and expertise.

Class size is also an important factor. Especially at a residential college, groups of up to six students

might reasonably be expected to work together in a major endeavor such as this. For slightly larger classes,

it might be feasible to have two or three groups working in parallel, perhaps on different features of the same

larger project. Periodically, the groups could share their findings and compare notes. Because the course

structure relies on the project to provide a substantial portion of the content, it may not be appropriate to

assign substantively different projects to each group in a class with multiple groups. Instructors with much

larger classes might find that the individual attention required from the instructor cannot be adequately

distributed among many groups.

Teaching the project-centered course is an exercise in responsiveness. The instructor is in many ways

more of an interpreter than a pilot, since the students will strongly influence the development of the course.

The result is stimulating and quite fruitful.
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2.2
Making the Epsilons Matter

Stephen Abbott

Middlebury College

Our subject is the most curious of all|there is none in which truth plays such odd pranks.
|G.H. Hardy

2.2.1 Calculus or Analysis?

My first attempt at teaching an introductory course in real analysis went well enough I thought. The

students came to understand the logical structure of the proper definition of a limit and we used it to

prove that polynomials really are continuous. I introduced enough topology of the real line to show that

continuous functions on compact sets are uniformly continuous and attain extreme values, and then pressed

on to show how this leads to an elegant proof of the Mean Value Theorem for the derivative. In the last

part of the term we made a proper pass through the theory of the Riemann integral and, as a big finish,

used our rigorously justified Mean Value Theorem to construct an argument for the Fundamental Theorem

of Calculus. When the dust settled there was plenty to be proud of. The course evaluations were generally

positive, the students learned how to write a proper �{ı proof and, as far as I could tell, no one had gotten

hurt along the way.

Although it took several years of thinking and tinkering before I was able to put my finger squarely

on why my first versions of this course felt oddly unsatisfying, the conclusions I reached are hardly

revolutionary. If I had asked the best students from that first semester to characterize real analysis, they

would have explained that it is a careful retracing of the introductory calculus syllabus where we take

the time to fill in the gaps and flesh out the thorny details of the proofs. The problem with this answer

is that, although it describes the class I taught, it really does not describe the subject. To the best of my

knowledge, the continuity of polynomials has never been in any doubt, and although a proof of this fact

may be good evidence that our definition of continuity is reasonable, it is certainly not the reason analysis

was created.

For me, the missing ingredient in my course was a worthy reward for the the hard work of firming

up the logical structure of limits. A proof of the Chain Rule, or even of the Fundamental Theorem of

Calculus for continuous functions does not in my opinion reach the level of reward status. These are

familiar places|too familiar in the sense that students (like the pre-19th century founders of calculus)

have already enjoyed considerable intuitive success with these topics without the tools of analysis. The
goal of a course in analysis should be to challenge and improve mathematical intuition, not verify it.

67
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Truth plays such odd pranks

The painstaking process of learning to read, write and communicate in the language of rigorous proofs

makes a required course in analysis a widely dreaded event for students of mathematics from institution

to institution. With 10 or 15 years of calculus reform efforts emphasizing graphical and numerical ways

of thinking, it is tempting to suppose that we are doing our students a favor by limiting the scope of

introductory analysis to the familiar terrain of first year calculus. The problem is that by trying to make the

course easier we inevitably make it less interesting and consequently less worthy of the effort it requires.

A much better idea is to trust in the curiosity of our students and the beauty of our subject. A first

course in analysis is often seen as a preparatory course for developing the skills to go on to investigate

the enigmatic world of \odd pranks" associated with functions of a real variable, but I would argue that it

should be the place where these questions are confronted head on. Now it is certainly the case that most

textbooks, and most courses, already do this to some degree. To motivate completeness we generally start

by showing that not all numbers are rational. Before discussing cardinality we might wonder whether there

are more rational numbers or irrational numbers. When distinguishing between absolute and conditional

convergence it is natural to investigate whether the terms in an infinite sum can be rearranged without

affecting the value or the convergence of the series. The surprising answers to these questions give the

course its electricity and ultimately make the axioms and epsilons matter.

The point I wish to make is that even in a one-semester course|in fact, especially in a one semester

course|we should carry this motivational philosophy through to all of the topics. Does the Cantor set

contain any irrational numbers? Can the set of points where a function is not continuous be arbitrary? Are

derivatives continuous? If not, can any function be a derivative? Is every continuous function a derivative?

Is every continuous function differentiable somewhere in its domain? If not, are most continuous functions

differentiable at some points? Is every infinitely differentiable function the limit of its Taylor series? Using

the Riemann integral, is it possible to integrate every derivative? If not, is there some way to modify the

Riemann integral so that we can?

By shifting the emphasis to topics where an untrained intuition is severely disadvantaged, the hard

work of a rigorous study of functions becomes a much more reasonable request. Students wandering

through uncharted intellectual terrain are much more likely to buy into an axiomatic approach when they

are investigating questions that are inaccessible without it.

A shift of emphasis, not content

Over the years, I have made mental notes every time I hear myself say to the class, \Well, it turns out

that. . . " My goal in each case then becomes to carve out a rigorous path to these results using only

the standard ingredients of a traditional first semester course in analysis. (For me, these topics consist

of completeness and compactness in R, sequential and functional limits, continuity, uniform convergence

of sequences and series, differentiation and Riemann integration.) What is interesting is that, over time,

the raw material of the course has not changed much from year to year. What has changed a great deal

is where I place the emphasis. We spend less time verifying that we can evaluate certain integrals with

anti-derivatives and more time investigating what we can integrate. We spend less time proving power

series are well-behaved and more time investigating why Fourier series are not.

In most cases, I have taken these challenging topics and worked them into narrative tutorials that I

assign as group projects for two or three students. A corollary to this procedure is that, although at first

glance it would seem that adding some advanced topics might overwhelm the weaker students, the level of

difficulty can still be adjusted a great deal by altering the parameters and the frequency of the assignments.
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2.2.2 Sample Assignments

What follows are some examples of the projects that I have created. The time period for this kind of

assignment is usually a week and a half, and I make sure I am available for regular consultations. More

than once I have set assignments like these in place of a final exam and used our designated exam slot as

a time for student presentations (and heavy snacking).

Sets of Discontinuity

Given a function f W R ! R, define Df � R to be the set of points where the function f fails

to be continuous. We have seen that Dirichlet's nowhere continuous function g.x/ has Dg D R, and a

modification h.x/ of Dirichlet's function has Dh D Rnf0g, zero being the only point of continuity. Finally,
for Thomae's function t .x/, we showed that Dt D Q.

Exercise 1 Using modifications of these functions, construct a function f W R! R so that

(a) Df D Z.

(b) Df D fx W 0 < x � 1g.

The question to be investigated here is whether Df can take the form of any arbitrary subset of the
real line. In fact, we shall prove that this is not the case. The set of discontinuities of a real-valued function
on R has a specific topological structure that is not possessed by every subset of R. Specifically, Df , no

matter how f is chosen, can always be written as the countable union of closed sets. In the case where f

is monotone, these closed sets can be taken to be single points.

Monotone Functions

Classifying Df for an arbitrary f is somewhat involved, so it is interesting that describing Df is fairly

straightforward for the class of monotone functions.

Definition 1 A function f W A ! R is increasing on A if f .x/ � f .y/ whenever x < y and decreasing
if f .x/ � f .y/ whenever x < y in A. A monotone function is one that is either increasing or decreasing.

Continuity of f at a point c means that limx!c f .x/ D f .c/. One particular way for a discontinuity

to occur is if the limit from the right at c is different from the limit from the left at c. As always with

new terminology, we need to be precise about what we mean by \from the left" and \from the right."

Definition 2 (Right-hand limit) Given a limit point c of a set A and a function f W A ! R, we write

lim
x!cC

f .x/ D L

if for all � > 0 there exists a ı > 0 such that jf .x/ � Lj < � whenever 0 < x � c < ı.

Equivalently, in terms of sequences, limx!cC f .x/ D L if limf .xn/ D L for all sequences .xn/

satisfying xn > c and lim.xn/ D c.

Exercise 2 State a similar definition for the left-hand limit

lim
x!c�

f .x/ D L:

Theorem 1 Given f W A ! R and a limit point c of A, limx!c f .x/ D L if and only if

lim
x!c�

f .x/ D L and lim
x!cC

f .x/ D L:
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Exercise 3 Supply a proof for this proposition.

Generally speaking, discontinuities can be divided into three categories:

(i) If limx!c f .x/ exists but has a value different from f .c/, the discontinuity at c is called removable.

(ii) If limx!cC f .x/ ¤ limx!c� f .x/, then f has a jump discontinuity at c.

(iii) If limx!c f .x/ does not exist for some other reason, then the discontinuity at c is called an essential
discontinuity.

We are now equipped to characterize the set Df for an arbitrary monotone function f .

Exercise 4 Let f W R ! R be increasing. Prove that limx!cC f .x/ and limx!c� f .x/ must each exist

at every point c 2 R. Argue that the only type of discontinuity a monotone function can have is a jump

discontinuity.

Exercise 5 Construct a bijection between the set of jump discontinuities of a monotone function f and

a subset of Q. Conclude that Df for a monotone function f must either be finite or countable, but not

uncountable.

Df for an Arbitrary Function

Recall that the intersection of an infinite collection of closed sets is closed, but for unions we must restrict

ourselves to finite collections of closed sets in order to ensure the union is closed. For open sets the
situation is reversed. The arbitrary union of open sets is open, but only finite intersections of open sets are

necessarily open.

Definition 3 A set that can be written as the countable union of closed sets is in the class F � .

To this point, we have constructed functions where the set of discontinuity has been R (Dirichlet's

function), Rnf0g (modified Dirichlet function), Q (Thomae's function), Z, and .0; 1� (Exercise 1).

Exercise 6 Show that in each case we get an F� set as the set where each function is discontinuous.

The upcoming argument depends on a concept called ˛-continuity.

Definition 4 Let f be defined on R, and let ˛ > 0. The function f is ˛-continuous at x 2 R if there
exists a ı > 0 such that for all y; z 2 .x � ı; x C ı/ it follows that jf .y/ � f .z/j < ˛.

The most important thing to note about this definition is that there is no \for all" in front of the ˛ > 0.

As we will investigate, adding this quantifier would make this definition equivalent to our definition of

continuity. In a sense, ˛-continuity is a measure of the variation of the function in the neighborhood of a

particular point. A function is ˛-continuous at a point c if there is some interval centered at c in which

the variation of the function never exceeds the value ˛ > 0.

Given a function f on R, define Df;˛ to be the set of points where the function f fails to be

˛-continuous. In other words,

Df;˛ D fx 2 R W f is not ˛-continuous at xg:

Exercise 7 Prove that, for a fixed ˛ > 0, the set Df;˛ is closed.

The stage is set. It is time to characterize the set of discontinuity for an arbitrary function f on R.

Theorem 2 Let f W R! R be an arbitary function. Then, Df is an F� set.
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Proof. Recall that

Df D fx 2 R W f is not continuous at xg:

Exercise 8 If ˛1 < ˛2, show that Df;˛2
� Df;˛1

.

Exercise 9 Let ˛ > 0 be given. Show that if f is continuous at x, then it is ˛-continuous at x as well.

Explain how it follows that Df;˛ � Df .

Exercise 10 Show that if f is not continuous at x, then f is not ˛-continuous for some ˛ > 0. Now

explain why this guarantees that

Df D
1[

nD1

Df; 1
n

:

Because each Df; 1
n
is closed, the proof is complete.

To fully appreciate this result, it would be useful to have an example of a subset of R that is not an

F� set.

Exercise 11 Figure out how to use the Nested Interval Property to prove that if

fG1; G2; G3; : : :g

is a countable collection of dense, open sets, then the intersection
T

1

nD1 Gn is not empty.

(b) Use (a) to argue that it is impossible to write R D
S

1

nD1 Fn; where for each n 2 N, Fn is a closed

set containing no nonempty open intervals.

(c) Now show that the set I of irrationals cannot be an F� set.

A Continuous Nowhere-Differentiable Function

Exploring the relationship between continuity and differentiability has led to both fruitful results and

pathological counterexamples. The bulk of our discussions to this point have focused on the continuity

of derivatives, but historically a significant amount of debate revolved around the question of whether

continuous functions were necessarily differentiable. Now we know that continuity is a requirement for

differentiability, but, as the absolute value function demonstrates, the converse of this proposition is not

true. A function can be continuous but not differentiable at some point. But just how nondifferentiable can

a continuous function be? Given a finite set of points, it is not difficult to imagine how to construct a graph
with corners at each of these points, so that the corresponding function fails to be differentiable on this

finite set. The trick gets more difficult, however, when the set becomes infinite. For instance, is it possible

to construct a function that is continuous on all of R but fails to be differentiable at every rational point?

Not only is this possible, but the situation is even more delightful. In 1872, Karl Weierstrass presented an

example of a continuous function that was not differentiable at any point. (It seems to be the case that
Bernhard Bolzano had his own example of such a beast as early as 1830, but it was not published until

much later.) Weierstrass actually discovered a class of nowhere-differentiable functions of the form

f .x/ D
1X

nD0

an cos.bnx/

where the values of a and b are carefully chosen. Such functions are specific examples of Fourier series.

The details of Weierstrass' argument are simplified significantly if we replace the cosine function with a

piecewise linear function that has oscillations qualitatively like cos.x/.
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–1–2 1 2 3

1

Figure 2.2.1. The function h.x/.

Define

h.x/ D jxj

on the interval Œ�1; 1� and extend the definition of h to all of R by requiring that h.x C 2/ D h.x/. The

result is a periodic \sawtooth" function (Fig. 2.2.1).

Exercise 12 Sketch a graph of .1=2/h.2x/ on Œ�2; 3�. Give a qualitative description of the functions

hn.x/ D 1

2n
h.2nx/

as n gets larger.

Now, define

g.x/ D
1X

nD0

hn.x/ D
1X

nD0

1

2n
h.2nx/:

The claim is that g.x/ is continuous on all of R but fails to be differentiable at any point.

Continuity

The definition of g.x/ is a significant departure from the way we usually define functions. For each x 2 R,
g.x/ is defined to be the value of an infinite series.

Exercise 13 Fix x 2 R. Argue that the series
1X

nD0

1

2n
h.2nx/

converges absolutely and thus g.x/ is properly defined.

Exercise 14 Taking the continuity of h.x/ as given, reference the proper theorems that imply that the

finite sum

gm.x/ D
mX

nD0

1

2n
h.2nx/

is continuous on R.

This brings us to an archetypical question in analysis: When do conclusions that are valid in finite

settings extend to infinite ones? A finite sum of continuous functions is certainly continuous, but does this

necessarily hold for an infinite sum of continuous functions?
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±1 1 2

Figure 2.2.2. A sketch of g.x/ D
P

1

nD0.1=2n/h.2nx/.

Exercise 15 What theorem can we use in this case to prove that the infinite sum

g.x/ D
1X

nD0

1

2n
h.2nx/

defines a continuous function on R.

Exercise 16 (a) How do we know that the function g.x/ attains a maximum value on the interval Œ0; 2�?

Determine this maximum value.

(b) Let A be the set of all points in Œ0; 2� where g attains its maximum. Find one point in A.

(c) Is A finite, countable, or uncountable?

Nondifferentiability

The more difficult task is to show that g is not differentiable at any point in R. Let's first look at the

point x D 0. Our function g does not appear to be differentiable here (Fig. 2.2.2), and a rigorous proof is

not too hard. Consider the sequence xm D 1=2m, where m D 0; 1; 2; : : : :

Exercise 17 Show that
g.xm/ � g.0/

xm � 0
D m C 1;

and use this to prove that g0.0/ does not exist.

Any temptation to say something like g0.0/ D 1 should be resisted. Setting xm D �.1=2m/ in the

previous argument produces difference quotients heading toward �1. The geometric manifestation of this
is the \cusp" that appears at x D 0 in the graph of g.

Exercise 18 (a) Modify the previous argument to show that g0.1/ does not exist. Show that g0.1=2/ does

not exist.

(b) Show that g0.x/ does not exist for any rational number of the form x D p=2k where p 2 Z and
k 2 N [ f0g.

The points described in Exercise 18 (b) are called dyadic points. If x D p=2k is a dyadic rational

number, then the function hn has a corner at x as long as n � k. Thus, it should not be too surprising

that g fails to be differentiable at points of this form. The argument is more intricate at points between

the dyadic points.
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Assume x is not a dyadic number. For a fixed value of m 2 N [ f0g, x falls between two adjacent

dyadic points,
p

2m
< x <

p C 1

2m
:

Set xm D p=2m and ym D .p C 1/=2m. Repeating this for each m yields two sequences .xm/ and .ym/

satisfying

limxm D limym D x and xm < x < ym:

Exercise 19 (a) Without working too hard, explain why the partial sum gm D h0 C h1 C � � � C hm is
differentiable at x. Now, prove that, for every value of m, we have

jg0

mC1.x/ � g0

m.x/j D 1:

(b) Prove the two inequalities

g.ym/ � g.x/

ym � x
< g0

m.x/ <
g.xm/ � g.x/

xm � x
:

(c) Use parts (a) and (b) to show that g0.x/ does not exist.

Weierstrass' original 1872 paper contained a demonstration that the infinite sum

f .x/ D
1X

nD0

an cos.bnx/

defined a continuous nowhere-differentiable function provided 0 < a < 1 and b was an odd integer

satisfying ab > 1 C 3�=2. The condition on a is easy to understand. If 0 < a < 1, then
P

1

nD0 an is

a convergent geometric series, and it is straightforward to conclude that f is continuous. The restriction

on b is more mysterious. In 1916, G.H. Hardy extended Weierstrass' result to include any value of b for

which ab � 1. Without looking at the details of either of these arguments, we nevertheless get a sense that

the lack of a derivative is intricately tied to the relationship between the compression factor (the parameter

a) and the rate at which the frequency of the oscillations increases (the parameter b).

Exercise 20 Review the argument for the nondifferentiability of g.x/ at nondyadic points. Does the

argument still work if we replace g.x/ with the summation
P

1

nD0.1=2n/h.3nx/? Does the argument work

for the function
P1

nD0.1=3n/h.2nx/?

The Generalized Riemann Integral

If F is a differentiable function on Œa; b�, then in a perfect world we might hope to prove that

.1/

Z b

a

F 0 D F.b/ � F.a/:

Notice that although this is the conclusion of part (i) of the Fundamental Theorem of Calculus, there we

needed the additional requirement that F 0 be Riemann-integrable. To drive this point home, we spent a

considerable amount of effort constructing an example of a function that has a derivative that the Riemann

integral cannot handle. The Lebesgue integral alluded to in our earlier conversations is a significant

improvement. It can integrate the example we constructed, but ultimately it too suffers from the same

setback. Not every derivative is integrable, no matter which integral is used.

What follows is a short introduction to the generalized Riemann integral, discovered independently

around 1960 by Jaroslav Kurzweil and Ralph Henstock. This lesser-known modification of the Riemann

integral can actually integrate a larger class of functions than Lebesgue's ubiquitous integral and yields a

surprisingly simple proof of equation (1) above with no additional hypotheses!
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Gauges and ı.x/{fine Partitions

Let's quickly review the Riemann integral. Given a function f W Œa; b� ! R and a tagged partition

.P; fckgn
kD1

/, the Riemann sum generated by this partition is given by

R.f; P / D
nX

kD1

f .ck/.xk � xk�1/:

Definition 5 Let ı > 0. A partition P is ı-fine if every subinterval Œxk�1; xk� satisfies xk � xk�1 < ı.

In other words, every subinterval has width less than ı.

This gives us the ingredients necessary to define what it means for a function to be Riemann-integrable.

Definition 6 A bounded function f W Œa; b� ! R is Riemann-integrable with
Z b

a

f D A

if and only if, for every � > 0, there exists a ı > 0 such that, for any tagged partition .P; fckg/ that is
ı-fine, it follows that

jR.f; P / � Aj < �:

The key to the generalized Riemann integral is to allow the ı in the above definitions to be a function
of x.

Definition 7 A function ı W Œa; b� ! R is called a gauge on Œa; b� if ı.x/ > 0 for all x 2 Œa; b�.

Definition 8 Given a particular gauge ı.x/, a tagged partition .P; fckgn
kD1

/ is ı.x/-fine if every subinterval
Œxk�1; xk� satisfies xk � xk�1 < ı.ck/. In other words, each subinterval Œxk�1; xk� has width less than

ı.ck/.

It is important to see that if ı.x/ is a constant function, then Definition 8 says precisely the same thing

as Definition 5. In the case where ı.x/ is not a constant, Definition 8 describes a way of measuring the

fineness of partitions that is quite different.

Exercise 21 Consider the interval Œ0; 1�.

(a) If ı.x/ D 1=9, find a ı.x/-fine tagged partition of Œ0; 1�. Does the choice of tags matter in this

case?

(b) Let

ı.x/ D
(

1=4 if x D 0

x=3 if 0 < x � 1:

Construct a ı.x/-fine tagged partition of [0,1].

The tinkering required in Exercise 21 (b) may cast doubt on whether an arbitrary gauge always admits

a ı.x/-fine partition. However, it is not too difficult to show that this is indeed the case.

Theorem 3 Given a gauge ı.x/ on an interval Œa; b�, there exists a tagged partition .P; fc kgn
kD1

/ that is
ı.x/-fine.

Proof. Let I0 D Œa; b�. It may be possible to find a tag such that the trivial partition P D fa D x0 <

x1 D bg works. Specifically, if b � a < ı.x/ for some x 2 Œa; b�, then we can set c1 equal to such an x

and notice that .P; fc1g/ is ı.x/-fine. If no such x exists, then bisect Œa; b� into two equal halves.

Exercise 22 Apply the previous algorithm to each half and then explain why this procedure must eventually

terminate after some finite number of steps.
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Generalized Riemann Integrability

We now propose a new method for defining the value of the integral.

Definition 9 (Generalized Riemann Integrability) A function f on Œa; b� has generalized Riemann in-
tegral A if, for every � > 0, there exists a gauge ı.x/ on Œa; b� such that for each tagged partition

.P; fckgn
kD1

/ that is ı.x/-fine, it is true that

jR.f; P / � Aj < �:

In this case, we write A D
R b

a f .

Theorem 4 If a function has a generalized Riemann integral, then the value of the integral is unique.

Proof. Assume that a function f has generalized Riemann integral A1 and that it also has generalized

Riemann integral A2. We must prove A1 D A2.

Exercise 23 Finish the argument by showing that jA1 � A2j < � for an arbitrary � > 0.

The implications of Definition 9 on the resulting class of integrable functions are far reaching. This is

somewhat surprising given that the criteria for integrability in Definition 9 and Definition 6 differ in such

a small way. One observation that should be immediately evident is the following.

Exercise 24 Explain why every function that is Riemann-integrable with
R b

a f D A must also have

generalized Riemann integral A.

The converse statement is not true, and that is the important point. One example that we have of a

non-Riemann-integrable function is Dirichlet's function

g.x/ D
(

1 if x 2 Q
0 if x … Q

which has discontinuities at every point of R.

Theorem 5 Dirichlet's function g.x/ is generalized Riemann-integrable on Œ0; 1� with
R 1

0
g D 0.

Proof. Let � > 0. By Definition 9, we must construct a gauge ı.x/ on Œ0; 1� such that whenever

.P; fckgn
kD1

/ is a ı.x/-fine tagged partition, it follows that

0 �
nX

kD1

g.ck/.xk � xk�1/ < �:

The gauge represents a restriction on the size of �xk D xk � xk�1 in the sense that �xk < ı.ck/. The

Riemann sum consists of products of the form g.ck/�xk. Thus, for irrational tags, there is nothing to

worry about because g.ck/ D 0 in this case. Our task is to make sure that any time a tag ck is rational, it

comes from a suitably thin subinterval.

Let fr1; r2; r3; : : :g be an enumeration of the countable set of rational numbers contained in Œ0; 1�. For

each rk , set ı.rk/ D �=2kC1. For x irrational, set ı.x/ D 1.

Exercise 25 Show that if .P; fckgn
kD1

/ is a ı.x/-fine tagged partition, then R.f; P / < �. Keep in mind

that each rational number rk can show up as a tag in at most two subintervals of P .
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Dirichlet's function fails to be Riemann-integrable because, given any (untagged) partition, it is possible

to make R.f; P / D 1 or R.f; P / D 0 by choosing the tags to be either all rational or all irrational. For the

generalized Riemann integral, choosing all rational tags results in a tagged partition that is not ı.x/-fine

(when ı.x/ is small on rational points) and so does not have to be considered. In general, allowing for

nonconstant gauges allows us to be more discriminating about which tagged partitions qualify as ı.x/-fine.

The result, as we have just seen, is that it may be easier to achieve the inequality

jR.f; P / � Aj < �

for the often smaller and more carefully selected set of tagged partitions that remain.

The Fundamental Theorem of Calculus

We conclude this brief introduction to the generalized Riemann integral with a proof of the Fundamental

Theorem of Calculus. As was alluded to earlier, the most notable distinction between the following theorem

and the version we proved in class for the regular Riemann integral is that here we do not need to

assume that the derivative function is integrable. Using the generalized Riemann integral, every derivative
is integrable, and the integral can be evaluated using the antiderivative in the familiar way. It is also
interesting to note that for the Riemann integral the Mean Value Theorem played the crucial role in the

argument, but it is not needed here.

Theorem 6 Assume F W Œa; b� ! R is differentiable at each point in Œa; b� and set f .x/ D F 0.x/. Then,
f has the generalized Riemann integral

Z b

a

f D F.b/ � F.a/:

Proof. Let P D fa D x0 < x1 < x2 < � � � < xn D bg be a partition of Œa; b�.

Exercise 26 Show that

F.b/ � F.a/ D
nX

kD1

ŒF .xk/ � F.xk�1/� :

If fckgn
kD1

is a set of tags for P , then we can estimate the difference between the Riemann sum

R.f; P / and F.b/ � F.a/ by

jF.b/ � F.a/ � R.f; P /j D
ˇ̌
ˇ̌
ˇ

nX

kD1

ŒF .xk/ � F.xk�1/ � f .ck/.xx � xk�1/�

ˇ̌
ˇ̌
ˇ

�
nX

kD1

jF.xk/ � F.xk�1/ � f .ck/.xx � xk�1/j :

Let � > 0. To prove the theorem, we must construct a gauge ı.c/ such that

.2/ jF.b/ � F.a/ � R.f; P /j < �

for all .P; fckg/ that are ı.c/-fine. (Using the variable c in the gauge function is more convenient than x

in this case.)

Exercise 27 For each c 2 Œa; b�, explain why there exists a ı.c/ > 0 (a ı > 0 depending on c) such that
ˇ̌
ˇ̌F.x/ � F.c/

x � c
� f .c/

ˇ̌
ˇ̌ < �

for all 0 < jx � cj < ı.c/.
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This ı.c/ is the desired gauge on Œa; b�. Let .P; fckgn
kD1

/ be a ı.c/-fine partition of Œa; b�. It just

remains to show that equation (2) is satisfied for this tagged partition.

Exercise 28 (a) For a particular ck 2 Œxk�1; xk� of P , show that

jF.xk/ � F.ck/ � f .ck/.xk � ck/j < �.xk � ck/

and

jF.ck/ � F.xk�1/ � f .ck/.ck � xk�1/j < �.ck � xk�1/:

(b) Now, argue that

jF.xk/ � F.xk�1/ � f .ck/.xk � xk�1/j < �.xk � xk�1/;

and use this fact to complete the proof of the theorem.

The impressive properties of the generalized Riemann integral do not end here. The central source for

the material in this project is Robert Bartle's excellent article \Return to the Riemann Integral," which

appeared in the American Mathematical Monthly, October, 1996. This article goes on to outline many
other properties of this amazing integral. A more detailed development can be found in Integral: An Easy
Approach after Kurzweil and Henstock by Rudolph V �yborn�y and Lee Peng Yee or in a forthcoming book
by Robert Bartle to be published by the American Mathematical Society.

2.2.3 The Task of the Educator

After many years of teaching introductory analysis, I collected my notes and wrote Understanding Analysis,
an introductory text published in 2001 as part of Springer's UTM series. The preceding projects are edited

versions of ones that appear in the book, and there are eight others in the text. Because the core content of

the course is not heavily altered using this approach, one could surely use any number of excellent books

and still incorporate the injunction to emphasize questions of analysis over questions of calculus.

Driven by the desire to teach well, all of us in this business continue to seek creative ways to motivate

our students. In the spectrum of ideas that have been generated, I think it is fair to characterize the premise

of this essay as rather modest but still important. To say it again, if we really want our students to be

actively engaged in an analysis course, then we had better entice them with some firsthand exposure to

the enigmatic delights that arise in the careful manipulation of the infinite. There are also some other very

creative approaches to this course that should be considered. On the opening page of A Radical Approach
to Real Analysis, David Bressoud begins with the following quote from Henri Poincar�e: \The task of

the educator is to make the child's spirit pass again where its forefathers have gone. . . In this regard, the

history of science shall be our guide." Bressoud's remarkable book reads like a novel in some parts and

effectively motivates new concepts by putting them into the historical context that generated the need for

them in the first place. This idea is taken a step farther in Analysis by Its History, a fascinating text written
by E. Hairer and G. Wanner that is even more ambitious in its attempt to recreate the theory of calculus

and the 19th century transition to analysis \on period instruments."

Teaching a successful analysis course from any of these perspectives|and I have tried them all over

the years|requires, as a first step, a deeply committed attitude on the part of the instructor. Nothing very

good happens when we do not believe in the story we are telling or the way we have decided to tell it.

In some cases the best advice is the most obvious. Let's remember why we were originally drawn to the

subjects we teach and be sure to include in our courses the ideas that made us so passionate in the first

place.
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2.3
Innovative Possibilities for
Undergraduate Topology

Samuel Bruce Smith

Saint Joseph's University

2.3.1 Introduction

The development of topology ranks as one of the great success stories of twentieth century mathematics.

While the precise definition of a topological space is not yet a full century old, the subject has become

a core requirement for many branches of current mathematics research. From genetics to string theory to

the social sciences, applications of topology are diverse and pervasive. In its own right, topology is a vital

and ever growing area, comprising dozens of subfields and engaging hundreds of researchers around the

world.

The status of the undergraduate semester-course in topology is, unfortunately, not quite so glorious.

Introductory topology tends to be viewed as a course suitable primarily for students headed to graduate

school. While there are many superb textbooks in the field, most pitch the subject at an advanced level,

including far more material than is possible to cover in one semester. Ironically, the axiomatic rigor that

makes topology a model and solid foundation for other fields is precisely the characteristic that makes it

a difficult fit for the undergraduate curriculum.

In this paper, I hope to indicate how an introductory topology course can become an accessible and

popular elective for math majors of various strengths and diverse goals. One of the great advantages of

topology is the almost visual elegance of its formalism. By emphasizing this quality, a teacher can help

students cope with the level of abstraction that is endemic to all theory courses. Of course, the subject

matter of topology is its own greatest advertisement. By leading with the examples that have real geometric

appeal, students can be motivated to tackle the more demanding aspects of the subjects. The structure of

the course, moreover, should be sufficiently flexible to accommodate varied student needs. A topology

course can function as a satisfying conclusion to course work in mathematics as well as a preliminary

to graduate work. It can be the capstone of the pure mathematics curriculum and a starting point for

independent research.

2.3.2 Motivating the Abstraction

Opening a topology text to a random page illustrates a basic point about the subject. You are likely looking

either at a very intriguing picture or at a page of pure formalism: theorems, lemmas, proofs. This is a

81
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basic dichotomy of the field. In my experience, students are drawn to the subject matter of topology. The

challenge is to help students do the hard work of mastering the formalism. An excellent way to succeed is

to show students how elegant and satisfying the formalism can be especially when applied to a concrete

and familiar problem.

Perhaps the most important example of the power and intuitive appeal of the formalism of topology

takes the students back to first semester calculus. Every math major has nodded in agreement to the picture

proofs of the Intermediate Value Theorem (IVT) and the Extreme Value Theorem (EVT). Interestingly,

these theorems are rarely proven in calculus. When teaching calculus, I try carefully to prove each step in

the chain of implications EVT ) Local Extrema Theorem ) Mean Value Theorem and make a serious

effort to explain how the Mean Value Theorem leads to the Fundamental Theorem of Calculus. But I never

try to prove the IVT or EVT. The reason, of course, is that these proofs properly belong to topology.

In a topology course, the proofs of the IVT and EVT reveal the basic orthodoxy of the subject. They

indicate the power of the first definitions: open sets, continuity, and the crucial concept of topological

invariance. The first step is to characterize the objects of the theorems, in this case intervals, in topological

terms. This introduces the concepts of connectedness and compactness. The hard step is to prove that the
defined properties actually do characterize the objects, that is, that the connected sets are precisely the

intervals and the compact sets precisely the closed bounded intervals1. But now the power of the point of

view takes over. By the definitions, these topological properties are preserved by continuous surjections;

they are invariants. The proofs can, in fact, be visualized as commutative diagrams:

Figure 2.3.1. Visual Proofs of the IVT and EVT.

1As is often the case, the proof that the formalism really models the world is difficult!
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The proofs of these important theorems make a compelling opening act to a course. For students in-

tending to teach at the secondary level, the material is foundational. On the other hand, the notion of a

topological invariant opens the door to advanced topics like the classification of spaces up to homeomor-

phism (the resultR 6� Œa; b� is proved while results like S n 6� R
n make nice future goals). As with almost

every topic in topology, there are many possible directions to pursue here and many intersections with other

fields. Most importantly in terms of the course, these proofs can convince students of the elegance and the

necessity of the formalism.

In a recent article in The College Mathematics Journal [1], Brenton and Edwards discuss how concep-
tual problems with sets become obstacles to understanding formal constructions like the quotient group in

algebra. While students easily grasp the meaning of simple sets, e.g., sets of integers, they have problems

with exotic sets like the set of cosets. Thus the quotient group in algebra remains mysterious due to the

strange nature of its elements.

Topology is an excellent arena to work on tearing down this cognitive barrier. For example, consider,

as the authors do, the case of Z3. Students are happy with the representation f0; 1; 2g but understandably
less so with the coset representation f0 C ; 1 C ; 2 C g: Consider the possible representations of the unit
circle S1 W algebraic, trigonometric, geometric, or as the identification space Œ0; 1�=f0 � 1g: Which is the
most natural? The last option, being quite visual, is not so intimidating.

0 1
r rr &%

'$
0 D 1-

identify 0 and 1

This picture introduces the quotient space, which is a good starting place for understanding more exotic

sets. With some work, the topological isomorphism S1 Š R=Z can be understood. The task is not any

easier than it is in algebra but it might be, for some students, better motivated.

Next consider the torus T . The three-dimensional representation of T is manageable (and a good flash-

back to multivariable calculus). But the identification space representation below is perhaps even more

natural.

-b

6
a

6
a

-
b

� T

Routine exercises show that the topology is as expected. The product topology enters here via the

homeomorphism T � S1 �S1: This last fact, in turn, opens the door to topological groups. (Which spaces

have this structure, how could we get an invariant, etc.?) Moreover, it is now a simple matter to obtain

something strikingly different

-b

6
a ?a

-
b

� the Klein Bottle
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The abstraction now has become as much philosophical as mathematical. It is pretty clear what object

we intend by the diagram. But what can we say about its existence? It can be represented (immersed) in

three-dimensional space but it doesn't truly live (embed) there. To understand the Klein bottle mathemati-

cally we should use the formalism. The good news is that the formalism, in this case the quotient topology,

is no more difficult than for the torus.

A topology course can feature the intuitive aspects of the subject without sacrificing the essential

content. The preceding discussion hopefully serves to demonstrate how topics with concrete appeal can be

used to introduce the key concepts of the course, providing a well-motivated path to the standard material.

In the next section, I will offer some specific suggestions on how to organize such a course.

2.3.3 Structuring a Course

My basic goal in designing a topology course is to maximize the extent to which students discover the ideas

of the course for themselves. Thus I emphasize problem sets over tests and in-class group work and student

presentations over lectures. The advantage of this approach is clear: students feel ownership of ideas they

have worked through themselves. The principal drawback is that less material can be covered than in a

standard course, which might disadvantage the very best students. However, the structure of the course

described below is flexible enough to allow the most capable students to work on suitably challenging

problems without completely overwhelming the less advanced students. The key to this flexibility lies in

the role of homework in the course.

Problem Sets

Working problems is, of course, essential for learning mathematics. I recommend making homework

problems central to the course in terms of both weight and focus. In my experience, students feel less

intimidated if homework comprises a substantial fraction of the total points since they have more control

over their score on the problem sets than they do on a test. Of course, giving significant weight to homework

also justifies assigning many problems.

I divide homework problems into two types: practice problems, which reinforce the basic concepts and
are essentially routine, and challenge problems, whose resolution will be fundamentally more involved.
Practice problems function as traditional homework problems; they have a due date and are graded and

returned. Students are expected to attempt all of the practice problems.

Challenge problems, on the other hand, are elective: students can attempt those that interest them.

Challenge problems have no due date but remain open until a correct solution has been presented to the
class. Since it is not possible to have all the challenge problems presented in class, I also close challenge

problems when they have been solved by a substantial number of students. Thus the challenge problems

give the course the atmosphere of a research seminar. Moreover, the division of problems gives the students

choices about what topics they study in-depth without sacrificing basic common knowledge. One of the

pleasures of teaching topology is the great variety of possible topics and problems at all levels of difficulty.

The following examples indicate some possible ways that problem sets can be used to engage students in

the course and shed new light on other areas of mathematics.

Homework problems should be treated as a focal point of the class, not just as subsidiary exercises

yielding results with little bearing on the theory developed in lecture. For example, consider the standard

material on closure, interior, and boundary. A lecture on examples in Euclidean space motivates the

definitions. Routine problems like A D Aı [ @.A/ can be divided up between lecture and the practice

problems. Practice problems can also be formulated as \determine the closure and interior" of subsets
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of interesting topological spaces. Such problems give students early hands-on experience with exotic

topologies. Challenge problems can be harder standard results such as A � B D A�B or (more challenging)Q
Ai D

Q
Ai or (very challenging) the Kuratowski 14-set problem [3, Exercise 20, p. 101].

Problem sets can be thematic. For example, a problem set on the Cantor set C is always popular

with students. Practice problems can include the standard results (C is totally disconnected, perfect,

etc.). Proving C � f0; 1g! is also not difficult and makes a good exercise in understanding the product

topology. Challenge problems could include (the rather strange result) C � C! and (with hints) the

various uniqueness results for C: This type of problem set can also open the door to independent research

problems.

Homework topics can provide an instructive interaction with other areas of the undergraduate curricu-

lum. An obvious example is topological groups. Here a couple of lectures can provide the background

while practice problems can include proving properties like Hausdorff (assuming T1) and homogeneity of

coset spaces (a useful exercise with the quotient topology). Challenge problems can include regularity of

G and of G=H or, for a concrete example, proving GL.n; R/ has exactly two path components.

The various incarnations of set theory in topology can be organized to provide a novel tour of Cantor's

theory. For example, the space S� (in Munkres' notation), consisting of all countable ordinals union the

first uncountable ordinal � in the order topology, is a rich source of counterexamples. Studying properties

of this space in a problem set provides an opportunity to review and discuss the well-ordering theorem,

the construction of the ordinals and the continuum hypothesis. Other possibilities in this direction are the

theory of Baire spaces and the set theory involved in proving the Tychonoff theorem.

In-Class Assignments

Topology represents the context for one of the most famous pedagogical innovations of the twentieth

century. The Moore method, as developed by R.L. Moore at the University of Texas, eliminates all texts and

references from the course, forcing the students to truly discover the results of the subject for themselves.

While the Moore method is probably not suitable for most undergraduate classes, it is possible to recreate

part of the experience for students using in-class assignments. I set aside several classes each semester,

timed to coincide with the start of a new topic, during which the students split into groups and work

on problems. For example, after introducing the separation axioms (Hausdorff, regularity, normality etc.)

the questions which axioms are hereditary (inherited by subspaces) and which are productive (passed to
products) are natural and open ended. Resolving these questions is easy in the case of the Hausdorff axiom,

hard but possible for regularity, and very difficult for normality. Thus these exercises give students a taste

of two aspects of mathematical research: the consideration of propositions whose status is not known ahead

of time and the great range of difficulty that similar-sounding statements can have. An alternate approach

is to give each group a different, related problem (e.g., the many interrelationships among the countability

and separation axioms) and have a volunteer from each group present its findings. In-class group work

provides a lively alternative to lecture and an excellent opportunity for students to work on their topology

language skills with help readily available.

Student Presentations

Every undergraduate mathematics major benefits from practice presenting mathematics to their peers.

Unfortunately, student presentations are generally an inefficient use of class time since students tend to

be a passive audience for their peers. Challenge problem presentations provide a partial solution to this

problem. When a student volunteers to present a challenge problem the status of the problem is still open.

Since the proposed solution has not yet been graded, the students themselves must judge the correctness
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of the presentation as well as understand the techniques used. I award points both to the presenter and to

the audience. If the proof presented is incorrect then an audience member can score points for pointing

out difficulties or, even better, for finding a fix to a problem. Since many students have attempted each

challenge problem the students have real incentive to be an active audience. In this context, topology offers

an advantage over other courses in that there are not only proofs to present but challenging yet accessible

constructions as well. For instance, constructing an example of a path connected space which is nowhere

locally connected makes for a nice challenge problem and presentation.

2.3.4 Independent Research Directions

An introductory course in topology is an excellent spring-board to undergraduate research. The breadth

and pervasiveness of the field makes it easy to design independent study projects which exhibit a strong

interplay of topology with other areas of the undergraduate curriculum. Such integrated projects have a

dual benefit: they appeal to students whose ultimate interests lie outside topology proper and they offer a

vista onto the world of mathematical research where there are no fixed boundaries between fields. Below

are some possible directions for independent study and research in topology arranged roughly by their

relationship to other (undergraduate-level) disciplines.

Analysis

After introductory courses in analysis and topology, there are a wealth of topics that can be pursued as

independent studies. Examples include the theory of curves (Peano spaces and the Hahn-Mazurkiewicz

Theorem), dimension theory, and fractals. Elementary functional analysis involves topology, analysis, linear

algebra, as well as some elementary ring theory. (See [7] for an approach emphasizing the topological

aspects of function spaces.) For students intrigued by the Cantor set, there are interesting advanced results

related to its universal properties and its many generalizations.

Geometry

The classification of compact surfaces is a beautiful and accessible theorem with real geometric appeal.

(See [3,4].) The notions of Euler characteristic, genus, and orientability are all illustrated by the theorem

and can be pursued in more classical geometric contexts. Knot theory combines geometric appeal with

connections to algebra and even physics. Geometric topics also occur in the theory of manifolds and in

elementary differential topology.

Set Theory and Foundations

In addition to its many exotic set-theoretic examples (the ordinal space, the Tychonoff plank), advanced

point-set topology offers a large supply of interesting problems in the intersection of topology and set

theory. Consider, for example, the mathematics surrounding Dowker's conjecture. Since normality is not
productive, it is natural to introduce stronger generalizations which are. The class of binormal spaces is
characterized by the fact that the product with the unit interval X �I is normal for X binormal. The usual

problem of finding a distinguishing example leads, in turn, to Dowker's conjecture: that, in fact, X � I

is normal for every normal space X . M.E. Rudin proved that Dowker's conjecture is unprovable using

the axioms of set theory but the question of independence remains open. (See [5] for a relatively recent

reference on current research.) An independent research project on Dowker's conjecture thus involves both

interesting advanced topology and modern set theory.
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Combinatorics

For students interested in combinatorics, there are many possible projects with topological flavor. Com-

pactifications are used in Ramsey theory, surfaces in graph theory, and simplicial complexes in the theory

of order. An introduction to the theory of arrangements makes a great research project with a nice interplay

of topology and combinatorics.

Algebra

The first elements of algebraic topology (homotopy, the fundamental group, covering spaces) make a natural

sequel to an introductory topology course. Advanced topics include the Galois correspondence between

the subgroup lattice of �1.X/ and covering spaces of X , free groups via the fundamental group, and the

Seifert-Van Kampen Theorem. Other topics in the intersection of algebra and topology include topological

groups, transformation groups, and topological rings. Determining the structure of the various equivalence

groups (homeomorphism, homotopy self-equivalence, etc.) of a topological space represents a fundamental

and difficult problem in topology. However, aspects of this problem can be pursued as undergraduate

research.

Computer Science

Effective computation in topology and its relationship to functional programming is an area of active current

research. For example, in [5] the authors provide an advanced but readable account of a program named

Kenzo, which gives a solution to the computability problem for the first homotopy groups of a simplicial
complex. A student knowledgeable about topology and programming could implement an algorithm such

as this in some special cases.

2.3.5 Attracting Students

Thus far we have discussed the many possibilities for content in an undergraduate topology course and

have skirted over the issue of how to populate such a course. Topology is an obvious choice for a student

planning on doing graduate work in mathematics. But the preceding discussion suggests that a larger and

more diverse group of students can and should be exposed to the subject. The question remains as to how

to attract these students.

My results in this area have been decidedly mixed. My first attempts to offer a course in topology

resulted in one or sometimes two very seriously interested students, with no hope of drawing the four or

five more needed to actually run the course. This was a great development for initiating undergraduate

research in topology but not for running a course.

My current approach is to try to draw students from a larger pool, particularly from the group of future

high-school teachers. At a departmental seminar devoted to describing current electives, I give a brief talk

to juniors and seniors, sketching the foundational role of topological ideas for calculus and emphasizing,

as above, the power of the abstract perspective in this context. Many of these students, especially those

with an interest in secondary education, are actively involved as tutors in calculus. They also have the

mathematical maturity to appreciate the need for a rigorous proof even of extremely intuitive statements

like the Intermediate Value and Extreme Value Theorems. I also describe some of the visual examples

mentioned above and the connections between topology and the other areas of mathematics.

It is a simple fact of life that the appeal of topology as a subject must do combat with its deserved

reputation for difficulty. As a result, many students decide that a topology course is not for them. How-
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ever, this aggressive approach to marketing has yielded a small but sufficient audience for a course with

representatives evenly mixed between future graduate students and future high school teachers. The idea

for organizing a flexible and participatory course, as described above, then comes into play in satisfying

the diverse needs and interests of these students.

2.3.6 Conclusion

As regards the undergraduate curriculum, topology suffers from an embarrassment of riches. There are

far too many wonderful problems, examples, theorems, and applications for a single semester course.

A topology course can be organized, however, to turn this breadth into an advantage, allowing students

of varied interests and abilities to pursue different problems and paths. Moreover, the visual appeal and

elegance of the subject can be used to help students master the considerable level of abstraction. Finally,

topology offers a wealth of possibilities for capstone experiences and integrated undergraduate research.
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2.4
A Project-Based Geometry Course

Jeff Connor and Barbara Grover

Ohio University

2.4.1 Introduction

In the Fall of 1997 Ohio University replaced its traditional \Foundations of Geometry" sequence with one

in which the students develop their own sets of axioms and use them to establish some well-known results

of plane geometry. By constructing their own axioms, the students gain a sense of both the source and the

role of formal axiomatic systems. Since axioms are introduced and developed as needed, the students gain

an appreciation of the significance of each axiom as it is added to the set of axioms.

As the students start the course by developing their own axioms, the course is not amenable to the

traditional lecture approach of developing the material. The students develop their axiom systems while

working in structured cooperative groups and making use of a variety of manipulatives and software

programs during their discussions. By the end of the sequence, the students have addressed all of the

concepts included in the traditional course and more. They also gain, in our belief, a deeper understanding

of the material than would be developed in the traditional lecture style course.

2.4.2 The General Approach

The projects described in this paper were designed for a geometry course taken primarily by prospective

middle or high school teachers. The major theme of the projects is to connect experience and abstract

mathematics. The early projects are designed to give students experience in working with non-Euclidean

geometries while exploring the validity of certain common sense propositions in these geometries. Later,

once the students become familiar with models of these geometries, they are asked to develop an under-

standing of unfamiliar mathematics using those same models. A second theme is that the students learn

mathematics using the tools they will eventually use in their professional lives. Since prospective teachers

are very likely to use cooperative group work and technology in their own classrooms, they learn geometry

using these pedagogical styles and learning aides.

Although the course described below was designed with prospective teachers in mind, the same ap-

proach can be used for other courses and other audiences. To find topics that will help the students move

from familiar to unfamiliar material, it may be helpful to look to the history of the subject for project

topics. As will become clear, this was the basis upon which some of the geometry topics were selected.

Alternatively, one could look for a problem that captures the students' imaginations and have them develop

89
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the tools they need to solve the problem in a project. For instance, as a prelude to working with coupled

differential equations, one could have the students work in cooperative groups to design a policy to control

an animal population.

The above themes are consistent with the constructivist theory of learning. The projects described below

are designed to either have students build abstract knowledge from their experience or, when necessary,

generate experiences that will lead to a better understanding of the topic. The projects also conform to the

\Necessity Principle" proposed by G. Harel: \Students are most likely to learn when they see a need for

what we intend to teach them. . . ", where the need noted here is an intellectual need [4]. In this case, the

initial intellectual need we work to satisfy is the need of the prospective teachers to eventually present

geometric arguments to their students. We also use software and manipulatives to create further intellectual

needs by presenting geometries (e.g., spherical) where some of the standard facts of plane geometry are

no longer valid.

The influence of Dr. David Henderson also needs to be acknowledged; our course revisions came after

the first author attended a NSF-funded workshop \Experience and Geometry" organized by Henderson.

One of the major themes of the workshop was that mathematics and human experience are intertwined. All

of our projects reflect that theme. Although we do not develop geometry in the same manner Henderson

does in his book [5], his philosophy had a direct impact on our work.

2.4.3 The Motivation for Change

Before discussing some particular projects used in the course, it is helpful to review some of the motivation

for changing the structure of the course. The \Foundations of Geometry I, II" is a two-quarter sequence

taken primarily by prospective middle and high school teachers. The catalog describes the course as follows:

Introduction to axiomatic mathematics via two finite geometries and a variety of interpretive

models. Develops plane Euclidean and non-Euclidean geometries in rigorous fashion from axiomatic

approach.

Prior to Fall 97, the course was typically an axiomatic development of absolute geometry (which makes

no assumption regarding the uniqueness of parallel lines) and Euclidean geometry, with a brief discussion

of hyperbolic geometry using the Poincar�e disc as a model.

The major failure of the traditional approach to the course and the deepest motivation for change, at

least in the first author's eyes, was that it did not give the students the experience of doing mathematics.

Using the traditional approach, most of the students anticipated and experienced the course as a tedious

exercise in the memorization of proofs of obvious facts. Given that nearly all of the students in the

course have only had a high school background in Euclidean geometry, they typically do not see the need

to make a careful development of geometry without making any assumptions about parallels. The brief

time spent with the Poincar�e disc was insufficient to justify the effort spent on developing the results of

absolute geometry, especially since the proofs of several theorems of absolute geometry can be considerably

simplified by assuming the Euclidean parallel postulate. In addition, the students tended to rely on the

instructor to develop the material and often did not appear to develop the intellectual skills needed to learn

and understand any new mathematics they might be asked to work with after graduation. Two major goals

of the revision were to give the students the experience of developing mathematics as a human endeavor

and to give them the intellectual tools that they would need to learn any new and unfamiliar mathematics.

Another impetus for changing the course came from the National Council of Teachers of Mathematics

(NCTM). The 1989 NCTM Curriculum and Instruction Standards [7] suggested that high school geometry
should include spherical geometry and local axiomatic systems. Students also should experience experi-

menting with interactive computer software packages to observe relationships and then develop deductive
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arguments for their discoveries. In addition, high school students planning to attend college \should gain

an appreciation of Euclidean geometry as one of many [emphasis added] axiomatic systems."

The 1989 standards also suggested that teachers use a variety of teaching strategies. In particular,

\greater opportunities should be provided for small-group work, individual explorations, peer instruction,

and whole-class discussions in which the teacher serves as moderator." The general tenor of these rec-

ommendations is continued through the NCTM's 1991 Professional Standards [8], the 1995 Assessment
Standards [9] and the 2000 Principles and Standards [10].

The NCTM recommendations are consistent with the recommendations of other organizations. The

National Educational Technology Standards (NETS) for Teachers state that teachers should be able to

design \effective learning environments supported by technology" and \implement plans that include

strategies for applying technology" [6]. The Conference Board of Mathematical Sciences issued a report

on the Mathematical Education of Teachers in Fall, 2001 which recommends that \prospective teachers

have mathematics courses that develop a deep understanding of the mathematics they will teach" and

mathematics courses should \develop the habits of mind of a mathematical thinker and demonstrate flexible,

interactive styles of teaching." [2]

2.4.4 Course Description

While both the traditional and revised geometry courses address similar material for the first part of the

sequence, there are differences in how the material is developed and in the order in which the topics are

presented. In the revised course, the material is developed over a sequence of projects. Each project consists

of two or three progress reports, which require each group to write-up the results of their investigations,

and a final report. The final report gives the students an opportunity to rework some of the results of the

progress reports and to synthesize the results of the progress reports and lectures related to the project.

Each student works as a member of the same cooperative group throughout a project.

At the time of the revision, we anticipated that the change in format would require substantially more

class time to address the material usually covered in the traditional course. As a result we increased the

number of contact hours per week from three to five. As it turns out, most of the material from the

traditional course can be developed in the first three-quarters of the sequence.

Changes Related to Content

One of the main differences in the two versions of the course is that non-Euclidean geometry is introduced

much earlier and the students work with models of these geometries much more extensively. This serves

to motivate some of the more difficult results of absolute geometry. For instance, while it is fairly easy

to establish that the angle sum of a triangle is 180ı in Euclidean geometry, it is much more difficult to

establish that the angle sum of a triangle is less than or equal to 180ı in absolute geometry. Since this

proof requires the use of the triangle inequality, this result occurs late in the traditional development of

absolute geometry. As described below, the revised course introduces this result, but not the proof, early in

the course along with the surprising (empirical) observation that in the Poincar�e disc (and on the sphere)

the area of a triangle is determined by its angle sum.

The other significant difference is that topics progress from the familiar, couched perhaps in unfamiliar

settings, to the technical and unfamiliar. For instance, the first two projects are on area and the angle sum

of a triangle, which were normally developed in the second half of the traditional course. In the revised

course, many of the more technical topics that appeared early in the traditional course (such as the ruler

postulate and the betweenness axioms) are developed later in the course, after the need for the topic has

been established.
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Another difference is that the revised course contains a significant amount of transformational geometry

that was not included in the traditional course. This topic is developed using a manipulative (the MIRA) that

allows students to perform reflections first of all with pencil and paper, then by using vectors and matrices,

and finally from an axiomatic viewpoint. Recent versions of the course also include an introduction to

taxi-cab geometry, a topic which appears in some secondary school geometry textbooks, and isometries

(and hence congruence) in taxi-cab geometry.

The Use of Structured Cooperative Groups

One significant pedagogical change is that the content of the course is introduced via group projects. As a

result, approximately 70% of the class time is spent having the class work in structured cooperative groups.

The class is divided into structured cooperative groups for the duration of a project. Each group consists of

three to four students and the instructor determines the membership of each group. The instructor usually

tries to balance each group in terms of mathematical ability, writing skill, gender, and compatibility. This

is, in part, to create an atmosphere in which students are encouraged to take intellectual risks with each

other and in the class. Each member of the group is assigned one of the roles of facilitator, recorder,

reporter, or checker. The facilitator keeps the group on task and controls the discussion, the recorder writes

up the results of the group discussion, the reporter is responsible for creating the final report and reporting

to the class and the checker makes sure that all of the group members are following the discussion. (A

three-person group does not have a checker.) The reporter keeps her/his role throughout the entire project

while the other roles are rotated for every progress report. The groups are rearranged at the end of each

project; the general objectives are to allow each student to have the role of reporter at least once and to

permit each student to work with a variety of other students in the class.

In order to encourage participation during group work, a short quiz is given following each progress

report and the final report. The questions are based on the group's work; a correct answer is the result

the group reported, even if the answer is mathematically incorrect. The total of the quiz scores is used as

part of the group grade for the report. Since every member of the group has to have a good understanding

of the content of the report in order to get a good grade on the quiz (and hence the report), each member

of the group is encouraged to be actively involved in the project and to make sure that the other group

members are involved. It also helps discourage a dominant group member from commandeering the project

and turning in her/his work as the group's work.

The Use of Technology and Manipulatives

The other significant pedagogical change involves the increased use of dynamic geometry software and

manipulatives to give the students experience working in Euclidean and non-Euclidean settings. Since the

class meets in a computer lab, the students have constant access to these tools.

The students work with the Poincar�e disc via the program NonEuclid. This program provides a software

simulation of the Poincar�e disc which allows the students to make a variety of geometric constructions

and perform reflections over lines. It also allows them to measure angles, the length of line segments and

the area of a triangle. Since the program does the required constructions and makes the measurements, the

students can work in the Poincar�e disc without knowing the Euclidean geometry underlying it. As a result,

they can empirically verify that the Poincar�e disc satisfies the axioms of absolute geometry and yet the

angle sum of a triangle can be less than 180ı. (In fact, the betweenness axioms are introduced by having

the students check that both the Geometer's Sketchpad and NonEuclid appear to satisfy these axioms.)

The students use Len �art spheres to work in spherical geometry. These are clear plastic globes with a

spherical straight edge and protractor. Students typically find it surprising that lines of latitude are not lines
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and that any two lines (great circles) must intersect. Students can draw and measure circles and angles,

and directly observe the results of the curvature of the sphere. For instance, students can directly observe

the failure of the exterior angle theorem and that the failure of the proof (given in a lecture) can be traced

to the failure of the betweenness axioms in spherical geometry.

The students use Geometer's Sketchpad to work in Euclidean geometry. Even though they find little

surprising about the geometry it represents, the students find the Sketchpad quite useful. In addition to its

well-known construction tools, it also allows students to study transformations and isometries in taxi-cab

geometry. Other tools include the MIRA, which allows the students to perform accurate reflections with

pencil and paper.

Assessment

Each group submits written progress reports and a final report at the conclusion of the project. The

instructor returns the reports along with a set of written comments. Typically, these comments address

mathematical correctness and style, while discussing any interesting observations the students may have

written into the report. Errors are classified as either minor or major. In the progress reports, points are

not deducted for minor errors; this allows students to take some risks and the instructor can be critical

without being punitive. In the final report, however, points are deducted for both minor and major errors.

As mentioned above, part of the grade for both the progress reports and final projects is determined by the

group's performance on a quiz. The written report typically counts for 60% of the score while the quiz

accounts for the other 40%.

In addition to the group work, each student is assessed for performance on quizzes, homework and

journal entries. There also are three traditional exams (two midterms and a comprehensive final). By

traditional examinations we mean closed-book examinations that cover the material developed in class.

Students typically are asked to state some definitions, to provide proofs of some of the results developed in

the lectures and projects, and to prove something they have not seen before. These examinations are taken

by individuals, not groups, during scheduled class time and are intended to help assess each individual

student's understanding of the material. Group work accounts for 25% to 30% of the student's final grade;

the remainder is based on individual work.

2.4.5 Some Sample Projects

The following projects from the first quarter of the course illustrate the above themes and course revisions.

The first two projects are discussed in detail to give a sense of how the material interconnects and how

student understanding of the material develops. The later projects are only briefly summarized, but they

show how the course closes and reflects a gradual shift in emphasis in the projects. It is not necessary to

develop the entire course using projects. It may be useful to develop just one or two topics using the project

based approach. For instance, the angle sum project could be used after a lecture-based development of

incidence geometry and the basic results on betweenness and plane separation.

First Project: Area

The first project is used to introduce the students to axiomatic systems by having them develop proofs for

some facts that everybody knows: the formulae for the area of a rectangle, parallelogram and trapezoid.

In this project, the students develop an axiom system that will allow them to justify the standard area

formulas for these figures. The students also verify that The Geometer's Sketchpad (GSP) is a model of
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their axiom system and then show that only some of the axioms hold on the surface of a sphere. The

project takes about four weeks and is divided into three progress reports and a final report as follows:

Progress Report 1 By first assuming the formula for the area of a square and then for a triangle, the

students then describe a procedure for finding the area of a polygonal region. This usually takes the form

of partitioning the region into either squares or triangles and then summing the areas of the figures in the

partition. They then use one of these procedures to justify the standard formulae for the area of a triangle,

square, rectangle and trapezoid.

The procedure for dividing the region into triangles is usually quite straightforward, but the attempt to

partition a region into square subregions leads to technical difficulties almost immediately. For instance,

how does one divide a
p

2 � 1 rectangle into squares? The students rarely introduce concepts from

calculus and are sometimes surprised to find that they are reinventing the notion of the limit in some of

their procedures. Another issue that comes up is whether the notion of equidistant should be included in

the definition of parallel lines. This continues to be a point of discussion until the Poincar �e disc, where

parallel lines are not equidistant, is introduced in the second project.

The instructor comments on this report tend to focus on the more obvious gaps in the students'

arguments. For instance, if a diagonal is used to divide a parallelogram into two triangles, then it is often

assumed that the two triangles will have the same height. A more subtle point is justifying (or creating an

axiom) supporting the claim that a polygonal region can be divided into triangular subregions.

Lecture on Axiom Systems In this lecture students are introduced to the idea of an axiomatic system

and the concept of a model for a set of axioms. As part of this lecture, they are introduced to the axioms

of incidence geometry and, as models of this axiom system, finite geometries. The material in this lecture

is used as the basis for a set of homework problems.

Progress Report 2 Using their work from the first progress report, the groups develop a set of axioms

for a theory of area along with definitions for rectangles and parallelograms. They also verify that GSP is

a model of their axiomatic system and then prove some of the standard area formulae using their axiomatic

system.

Verifying that GSP is a model of their axiom system leads to some good mathematical conversations.

The usual form of this verification is to test a large collection of figures. For instance, a typical axiom is

that the area of a triangle is \one half the base times the height". To verify this, the students construct

a triangle and compare the result of \one-half the base times the height" to the area as given by GSP's

area function. In order to take advantage of the dynamic feature of the software, the height should be

constructed in such a way that one can move the vertices and have the height change along with the

triangle and hence test the conjecture for a large collection of triangles. Quite often, students don't think

of using the dynamic aspect of the software in this fashion. This leads to conversations about how one

should construct figures so as to keep their defining properties while being able to move their vertices. For

example, how can we construct a rectangle so as to be able to move any of three of its vertices and still

have a rectangle? This can also lead to a discussion of the role that a definition plays in mathematics.

Students are also encouraged to identify the gaps in their arguments. This is where they can include

ideas such as a closed figure, interior of a region, being between two points, length, algebraic operations

with real numbers, and the like; concepts that are important but would take them away from developing

a theory of area. Often these notions are described using a large set of undefined terms that come out of

their discussions. As the course proceeds and a more sophisticated system of axioms is developed, many

of these notions are made precise.
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The instructor comments on these reports tend to focus on the axioms and definitions given by the

students. The students' definitions are often imprecise and notation is occasionally left undefined. Some

concepts are also left out of their list of gaps or undefined terms. The comments also address the given

proofs and any errors or missing steps in their proofs. Often, remarks address their experiments to verify

that GSP satisfies their axiom system.

Following this progress report there is a class discussion where the class agrees on a set of axioms

that will be used in the third progress report and the final report.

Progress Report 3 The students are introduced to spherical geometry and the groups use Len�art spheres

to do some experiments in spherical geometry. In particular, they explore the validity of their area axioms

on the sphere and discover that they do not work as expected. In particular, the area of a triangle cannot

be computed using the \one-half times base times height" formula because the result is dependent upon

which side of the triangle one uses as a base. Also, that one cannot construct a square on the surface of

a sphere comes as a surprise. (This often leads to revisiting the definition of a square.) They then modify

their axioms and, using the modified set of axioms, they derive a formula for the area of a triangle on a

sphere.

Final Report Using the class axiom system, the students write up their axiomatic systems for area in

the plane, provide proofs of the standard area formulas, and prove a formula for the area of a triangle on

a sphere. The students are, of course, supposed to use the instructor's comments on the progress reports

in preparing the final reports. While points were deducted only for major errors on the progress reports,

points are deducted for both minor and major errors on the final report.

Most of the major flaws in the arguments are corrected in writing the final report. There are still some

difficulties in applying the axioms and some imprecision in the definitions. For instance, that a particular

construction leads to a subdivision of a region is often justified via an axiom that asserts a subdivision

exists and height is often defined to be a line segment instead of the length of a line segment (and not

defined relative to a particular base). Most groups have made good progress in understanding what an

axiom system is and in organizing their thoughts into proofs. Also, at about this point in the course, the

student journal comments on creating proofs tend to turn from negative (\I can't do proofs.") to positive,

indicating that they feel more comfortable with proofs and doing proofs [3].

Second Project: Angle Sums

This project also has the students prove a fact that everybody knows: the sum of the measures of the

interior angles of a triangle is 180ı.

Introductory Lecture This project starts with a lecture on the construction of line segments and angles

via a brief introduction to the betweenness axioms and the axioms related to the measurement of angles.

No proofs are given; the purpose of this lecture is to give the students a working vocabulary for the project.

Progress Report 1 The students are shown a physical demonstration that the angle sum of a triangle is

180ı and then asked to use this as the basis for a proof. Typically, the students find they need to add an

axiom to the effect that if a line is a transversal to two parallel lines, then it forms a pair of congruent

alternate interior angles. This axiom in hand, the students can then show that the angle sum of a triangle

is 180ı. They also use GSP to find a formula for the angle sum of a polygon of a figure with n sides.

They find that in GSP the .n � 2/ � 180ı formula works for figures with a special shape (convex); as part

of the report they need to define this shape and then provide a justification for their formula.
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Lecture This lecture is a more rigorous version of the first lecture. The betweenness axioms are used

to justify some properties of line segments, rays, and so forth. The purpose of the lecture is to review

different methods of proof.

Progress Report 2 This progress report introduces the Poincare disc and the software program NonEu-

clid. The Poincar�e disc is introduced as another model where the incidence axioms and the betweenness

axioms are satisfied. The progress report is centered on using NonEuclid to explore statements equivalent

to Euclid's Fifth postulate. Such statements might include determining whether, given a line and a point

not on it, there is a unique line parallel to the given line passing through the given point. Another example

might include deciding whether two parallel lines are equidistant from each other. They also are asked

to observe that the exterior angle theorem, which is introduced as an axiom, is valid in both GSP and

NonEuclid. The groups also verify experimentally that the angle sum of a triangle is less than 180ı in

the Poincar�e disc. The groups usually do quite well on this project. There is often some difficulty with

performing the required constructions, but these are usually handled in class before the report is collected.

Lecture on Euclidean and Non-Euclidean Geometries This lecture draws on much of the experience

the students have had since the beginning of the quarter and is used to introduce the Euclidean and

non-Euclidean geometries via parallel postulates. The history of geometry is reviewed, especially the

development of hyperbolic geometry. Also, several statements equivalent to the Euclidean parallel postulate

are discussed with the aid of GSP and the Poincar�e disc.

Final Report The final report requires students to use the exterior angle theorem to construct parallel

lines and the Euclidean parallel postulate to show that if a line is a transversal to two parallel lines, then

the line forms a pair of congruent alternate interior angles. They are also asked to prove that the angle

sum of a triangle is 180ı in Euclidean geometry and the angle sum of an n-sided convex polygon is

.n � 2/ � 180ı.

These reports are usually quite good. There is some difficulty with how to use the hypothesis that a

parallel is unique in a proof, but most students eventually understand this. There is also some difficulty

understanding the concept of convexity and using it in a proof. (This difficulty persists for quite a while.)

Further Projects

At this point, the students are about a third of the way through the two-quarter sequence. They are working

with software models of Euclidean and hyperbolic geometry and a physical model of elliptical geometry.

The students have become comfortable working in groups. Typically the groups no longer need an active

facilitator or checker, even though we continue to assign the roles in the event one is needed. General

comments and concerns about group work stop appearing in the student journals as it becomes the accepted

way of working in the class. Except for clarification of mathematical issues, it sometimes feels as if the

instructor is no longer needed in the classroom once the groups are engaged in a project.

The first quarter closes with a study of the criteria for congruence of triangles and an introduction to

transformations in the Euclidean plane using the MIRA. The students develop rigorous proofs in absolute

geometry that if side-angle-side is a criteria for congruence, then so are angle-side-angle and side-side-side.

Using the Len�art spheres and NonEuclid, the groups discover that AAA is a criteria for congruence on

the sphere and in the Poincar�e disc. Although they cannot prove these results, they are usually justified on

the basis that the area of a triangle is determined by the sum of its angular measures.

Up until now, the students have only been proving results in absolute or Euclidean geometry. The

work with the sphere and Poincar�e disc has been primarily experimental and aimed at broadening their

experience in geometry. As the course continues, the projects change their focus from developing definitions
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and theorems to applying the students' experiences in previous projects to unfamiliar mathematics. For

instance, in an axiomatic approach to transformational geometry the students are given the definitions,

axioms, and theorems that they are to prove with little or no motivational background. As part of the

projects, they are asked to develop an interpretation of the abstract material in the context of GSP, the

Poincar�e disc and the sphere. Ultimately they show that any composition of reflections can be described

as a composition of three or fewer reflections. They also study the types of motions that each type of

geometry admits.

2.4.6 Student Reaction and Performance

The students appear to enjoy this method of developing the material and believe that they have had some

experience in doing mathematics. The anonymous student evaluations given at the end of the course often

contain statements to the effect that the course was interesting, that working on projects made the course

\more understandable," that they were able to develop theorems on their own, that they had to do most of

the thinking, and that \It helped me grasp the info better than if it was just lecture."

Student journal entries indicated that nearly all of the students enjoyed working in groups and using

technology. An analysis of student journals showed a surprising lack of concern regarding group grades

and fellow group members pulling their own weight. Most of the concern over these issues was expressed

at the beginning of the course during the first year it was offered; since then it has rarely surfaced in

journal entries. Student journals also indicate that working in groups is beneficial because it allows for

brainstorming, peer instruction, group checks of proofs, and confidence building. The students also found

the use of dynamic software and the Len�art sphere to be helpful. The primary positive theme regarding

the use of technology is that it provides a context to do explorations and build intuition with different

geometries. In a set of interviews with students taking the class, the students interviewed had a difficult

time determining whether the group work or the use of technology proved more helpful.

The revised course has been taught repeatedly by both authors. We believe the revised course creates a

greater student understanding of the subject matter. The mathematical conversations we have with students

are deeper and more productive. Students now use material from the geometry course in other courses.

Finally, the students appear to follow lectures with greater comprehension than in a traditional course.

An analysis of six sets of final exams indicated that students tend to do as well on exams in the revised

course as in the traditional course. Given a choice between answering a question on a topic developed in

group work or a topic developed in lecture, the students tend to answer the question on the topic developed

in group work, although performance is slightly better on topics developed in lecture. A more detailed

presentation of these results appears elsewhere [3].

2.4.7 Some Things to be Aware of

It helps to keep a few things in mind when moving to a project-based format, especially when the projects

are somewhat open-ended in terms of what is acceptable work.

To be effective, the instructor needs to have a solid understanding of the subject material and a

reasonable knowledge of the students' backgrounds. He/she not only must know the subject well enough

to realize what mathematical background is required for a project but also must be familiar enough with

the students' mathematical backgrounds to know if the project is within their range. If the students do

not have the required background, work on the project comes to a halt and they can get quite frustrated.

For example, if the project requires an inductive argument and induction is not a part of the course, it

is important that at least some members of each group have been exposed to induction arguments. Also,
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since the students will come up with a variety of approaches to a project, the instructor needs to know the

subject well enough to be able to help a group work with an inefficient or inelegant approach so that it

eventually leads to a solution. If an approach will not work, the instructor must be able to develop a line

of questioning that will help the group understand why an approach should be abandoned.

It is important to be (emotionally) prepared for what the students cannot do, even if their mathematical

backgrounds indicate that the work can be done. For instance, at the beginning of the geometry course,

students still have difficulty parsing the hypothesis and conclusion of a conditional statement even though

they have had a course that introduces them to proof. They often have surprising difficulty taking what

appear to be small steps. For instance, even though they can apply induction to derive summation formulas,

they have difficulty in using a similar approach to establish results such as the angle sum of an n-sided

convex polygon is .n � 2/ � 180ı. In fact, most groups do not even recognize it as a candidate for an

induction argument. Part of the difficulty is lack of experience on their part; the geometry course may

be the first course that expects them to draw actively from material covered in their previous courses.

The instructor also must be open to the possibility that the department's mathematics curriculum may not

effectively promote creative mathematical thought. It also may not develop the connections between the

content of different courses. Hence students may not achieve the expected level of understanding.

The instructor must be explicit about how the project is going to be graded and what constitutes

acceptable work. It takes two or three progress reports before the students believe that there really are

a variety of correct ways to approach a project. Unfortunately, what may appear to be the clearest of

instructions to the instructor may suffer from ambiguity when read by the students. Try as they might, the

students cannot read the instructor's mind; he/she should be ready to offer clarification of the instructions

as needed. Detailed feedback to the groups regarding their work is essential to developing a shared

understanding of expectations over time.

Given the above, most of the group work should be done in class. If the project is done outside of class,

a group can spend an inordinate amount of time either pursuing an unproductive approach or being stuck

on what the instructor thought was an obvious step. By being almost immediately available, a group's

current conundrum can provide an opportunity to model a mathematical approach to the problem. And

if the group is working in class, the instructor may be able to help them make a connection before they

abandon a good approach to the problem.

One strategy that can ease the transition to group work is to ask the students to respond to a journal

question such as: \To what extent are you satisfied that your group is working productively?" or \What

concerns do you have about group work?" Student responses can alert the instructor to misconceptions

about expectations or to unproductive behaviors of group members.

It takes a while for students to become accustomed to working in groups, so do not expect immediate

success. In the geometry course, it takes about four to five weeks before the groups start working effectively.

At the outset, the students do not understand that there is not a single correct approach to the material.

Once they understand that the instructor is not looking for a particular solution, the groups get better at

initiating and pursuing their own approaches to the problem. In addition, the first couple of weeks allow

the instructor to assess the background of the students and to fine tune the projects to the class. (For

example, add background lectures or adjust the problems in the progress reports.)

In the geometry course, five or six seems to be an optimal number of groups. The class needs to be

large enough to generate a variety of approaches to a problem or project. For difficult problems, it helps

the class as a whole when one group realizes how to do it. Just the knowledge that one group got it spurs

the others on to their own solutions. If there are too few students in the class, say only enough for two

or three groups, there doesn't appear to be the critical mass required to maintain momentum through the

difficult parts of the project. If there are too many students, say eight or more groups, it is difficult to

work with all of the groups during each class and the amount of grading becomes overwhelming.
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The main difficulties involved in using group work are fairly generic in nature and will show up in

almost any mathematics courses at the same level as the geometry course discussed here. However, there

is one difficulty that may be peculiar to using technology in a geometry course. Students sometimes have

difficulty creating objects satisfying particular properties that remain stable with respect to those properties

when you move to a free vertex. There is a tendency to use the programs as drawing tools to make one

figure as opposed to construction tools that generate a large set of figures for which a property is invariant.

A classical example involves the construction of parallelograms or equilateral triangles. A typical drawing

does preserve properties of the figure when a vertex is moved and thus it is difficult for the students to use

the dynamic aspects of software programs such as GSP, Cinderella, or NonEuclid. It generally is difficult

to get students to take full advantage of the dynamic aspects of any of the software packages used. Students

sometimes will construct a triangle in order to check a proposition and then erase it in order to construct

a different triangle to check the same proposition. It is only with some difficulty that they finally realize

that they can drag one vertex to create a different triangle.

While the instructor plays a role in each group's work, it is important to wean the students from

depending on the instructor for ideas and direction. It can be difficult for both the instructor and the

students to have the instructor provide only the gentlest of hints (if any at all) on how to start a problem or,

when asked to confirm whether a solution is correct (or not), to tell a frustrated group of students to come

to its own conclusion. It is much easier for both parties if the instructor gives a direct hint (\Why don't

you just try. . . ") or verifies the correctness of the work. The instructor needs to exercise judgment when a

group asks for help. While most of the time groups eventually will abandon unproductive approaches and

come up with their own solution, sometimes a group really does need a direct hint to get on with the report.

Or the instructor may have to intervene to prevent a group from moving in an unproductive direction. It

helps if each group contains at least one risk taker who will help get the group working on the problem.

Also, if a group continues to be dependent upon the instructor, it is worth reviewing the instructor-group

interaction; the instructor could be inadvertently promoting the group's dependence upon the instructor.

It probably is clear from the description of the course that it is fairly demanding of the instructor. In

addition to the in-class work, written comments on the progress and final reports are part of the dialog

between the groups and the instructor. The reports, with comments, should be returned promptly so it is

important to plan on when to collect them. It typically takes about 45 minutes to grade each progress report

and another 30 minutes to write the quiz after all of the progress reports are done. This is in addition

to grading any homework assigned and exams. There is some trade-off in that we only assign homework

once every two to three weeks instead of weekly. In a class of 24 or so, the group projects take about as

long to grade as a typical homework assignment in a traditional class.

By including a group component to the grade, the final course grades might not differentiate between

students as well as grades based purely on individual work. The group work is generally good, hence the

strong students still tend to get high grades. However, some of the weak students get higher grades than

they might have ordinarily earned. For instance, an individual with good group work grades and F's on

the exams and homework can get a D for the course. While it is a relatively rare occurrence, an occasional

student may not be an active group member. However, such students also tend to do poorly on exams and

homework and end up receiving the appropriate grade.

2.4.8 Conclusion

Even though the project based approach is more demanding of the instructor than the traditional lecture

approach, we feel it is worth the effort. Students leave the course with more confidence in their under-

standing of the concepts and feel prepared to use them. More than a few students have entered the course
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hating geometry only to start looking forward to the day when they could teach it themselves. In the case of

prospective teachers, the material has been developed in a fashion similar to the way they will be expected

to teach it. They are more likely to use dynamic software and manipulatives in a way that will promote

mathematical understanding in their students. Perhaps even more important, having had a taste of doing

mathematics (and liking it), there is an increased chance that the prospective teachers will convey some

of their enthusiasm to their students.
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2.5.1 Introduction

While module theory is not a regular part of a typical undergraduate mathematics curriculum, the topic

provides an excellent opportunity to tie together fundamental courses in group theory and linear algebra.

Many individual faculty members, whole departments, and consortia have addressed a common student

perception that the 10 to12 courses forming a mathematics major are all fairly distinct from one another.

The \seven into four" movement promoted by, among others, the United States Military Academy is a prime

example of changing the curriculum in such a way that students see deep relationships among calculus,

linear algebra, differential equations, multivariable functions, and so on. At the theoretical level, module

theory allows students to use their background in axiomatic mathematics to see modules as generalizations

of vector spaces, whose structure, under the right conditions, mimics the structure of finitely generated

abelian groups.

Most undergraduate mathematics majors in the United States require essentially a one semester course

in algebra, which typically covers the basics of groups, rings, and fields. Second courses in abstract algebra

might go deeper into group theory (Sylow theorems, series, solvability), Galois theory, or cover special

topics such as representation theory, simple groups, algebraic coding theory, etc. Rarely do students learn

about modules until they are in graduate school.

I do not argue that teaching module theory is better than teaching Galois theory or representation theory

to advanced undergraduates. I merely suggest that the topic deserves consideration at the undergraduate

level. Moreover, I find module theory a perfect topic to treat from a constructivist, pedagogical philosophy.

Rather than engage in a philosophical discussion of the pedagogical theory of constructivism, this

paper describes my experience using a kind of constructivist, or guided-discovery, approach in a senior-

level mathematics theory course.

I teach a reasonably modern Abstract Algebra I course: using discovery exercises to generate conjec-

tures, presenting theorems and proofs at the blackboard, encouraging discussion. Three of the five times

I have taught a follow-up algebra course (which I will refer to as my Modules Course), I have employed
an active learning method. It is not the Moore method or a typical constructivist approach, but as near a

true discovery approach as I dare get.

In Section 2.5.2 of this paper is a discussion of the philosophy of, and ideas behind, active learning

101
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methods, including the Moore method, modified Moore method, and constructivism. The overall scheme

of the Modules Course is outlined in Section 2.5.3 with a detailed example of a typical class day given

in Section 2.5.4. A description of student interactions and requirements is in Section 2.5.5. Section 2.5.6

concludes the paper with a personal evaluation of the Modules Course.

2.5.2 Active Learning

By active learning I mean any pedagogical approach to education based on the philosophy that students learn

best when they actively engage in constructing, discovering, or applying their own knowledge. An active

classroom may not entirely reject the lecture format but at the very least it supplements and complements

lectures with student-based activities.

In mathematics, especially at the college level, the active learning terms one most frequently hears are

Moore method, modified Moore method, and constructivism. Below I will briefly describe my interpreta-
tions of these three terms. In addition, I will describe the guided-discovery approach I use in my Modules

Course.

Moore Method

The Moore method (also known as the Texas method) was developed by Professor R.L. Moore, who spent

most of his career at the University of Texas at Austin (1920{1968). The basic tenet of Moore's approach

is that bright students can best learn mathematics by producing results themselves and by working as

individuals in a highly competitive atmosphere. Moore self-selected his students, aiming for uniformity

especially in their lack of knowledge of the topic at hand (often topology). Indeed, according to F. Burton

Jones [3] (a Moore student as well as a Moore method proponent), Moore \aimed to have a class as

homogeneously ignorant (topologically) as possible" and one in which \competition was one of the driving

forces." Moore began the course by supplying his students with axioms, definitions, and a sequential list of

theorems. The students proved the theorems themselves and constructed examples which both illustrated

the theorems and showed the necessity of the hypotheses [3]. (For more information, see any number of

papers, reflections and correspondences available at The Legacy of R.L. Moore Project web site [5].)
Moore required students to work by themselves with no access to outside help other than from Moore

himself. Students presented their work at the blackboard, with Moore calling on the weakest students first.

Generally, the class did not proceed until at least one of the students had successfully proved the particular

theorem for which the class was responsible.

Converts to the Moore method use the technique (or modifications thereof) in nearly every course one

might offer in a mathematics department. Physicists and other non-mathematicians have also found success

using the Moore method in their disciplines.

Modified Moore Method

There seems to be no single version of the modified Moore method. Some professors allow the use of a

computer to help develop intuition about a subject and generate conjectures [7]. Other faculty combine

lectures with student presentations [4]. A third typical modification is to allow students to work in groups

[1]. Moore believed that individual competition was key to classroom success, but others believe just as

strongly that cooperation breeds a successful and enjoyable learning environment.

Moore's success is seen not only in the number of PhD mathematicians who began their mathematical

careers in his courses, but in the number of converts to some variation of his method of teaching. Common

criticisms of the Moore method are that the competitive atmosphere is not a good learning environment
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for many students and that the method filters out the brightest students at the expense of the rest.

Constructivism

Constructivism is an important, though controversial, theoretical perspective in modern education research

that has its roots in philosophy and cognitive and developmental psychology. It is not my aim to engage in

a discussion of the relative merits of trivial vs. radical vs. social constructivism (promoted, among others,

by Piaget [6], von Glasersfeld [2], and Vygotsky [9] respectively). Nor will I present any mathematics

education research into the merits or success of using constructivism in abstract algebra (see the RUMEC

web site [8] (Research in Undergraduate Mathematics Education Community) for this type of research).
Rather, I will briefly explain my interpretation of constructivism in general and the manner in which it is

implemented in the Modules Course.

There is no single agreed upon method of applying constructivist ideals in the mathematics classroom.

Common themes of those whose teaching is informed by a constructivist philosophy are (1) directing

an active classroom that is not focused on lecturing at a blackboard, (2) using strategies that encourage

reflection and help create or enhance students' understanding of mathematical concepts, (3) advocating a

cooperative learning environment, and (4) respecting each student's individual learning techniques.

Implementation of constructivist ideas in mathematics classrooms comes in many forms such as the

use of manipulatives in elementary education, graphing calculators in secondary education, and computers

in higher education. It is not simply the use of a calculator or computer that makes a constructivist

classroom, but the manner in which it is used. Students are encouraged to investigate open questions,

generate conjectures, and suggest solutions and proofs.

Many teachers and faculty are devoted to constructivism, though its practice is not widespread at

the college level. While utilizing activities in the classroom is enormously popular|there are hundreds of

published examples of projects, labs, modules, activities, worksheets, etc., let alone unpublished examples|

basing an entire course curriculum on the ideas of constructivism remains rare. Even rarer still is the

implementation of non-Moore method constructivism beyond the first two years of a typical undergraduate

mathematics curriculum. I am myself a devotee of constructivist philosophy but generally do not even

attempt to run a course strictly based on constructivist principles. I do, however, dive in deep with my

Modules Course.

Guided Discovery in the Modules Course

The Modules Course is based on a constructivist philosophy, though it differs from the usual constructivist

approach in that the students truly discover and create their own mathematics. Like a Moore method course,

the term begins by giving the students a set of axioms that define an algebraic object with which they are

unfamiliar. The students analyze this object for the entire term. They ask questions, conjecture and prove

theorems, and choose the paths the class will follow.

I use the term \guided discovery" to describe the pedagogical style employed in teaching the Modules

Course. For the most part, the students construct their own knowledge and choose their own course of

study, but I try to subtly guide them with questions, comments, and even facial expressions. If the class

goes too far down a tangential path (e.g., What is there to say about all the homomorphisms from the group

of integers mod n to itself?), I help them focus on a more narrow question (e.g., What kind of algebraic

structure does HomZ.Zn;Zn/ have?). If the class cannot see an important point because their choice of

examples is too narrow, I suggest they investigate other examples. For instance, if the students believe that

generating sets are the same as bases, then I ask them to consider Z6, as both a Z- and Z6-module. I do

not tell the students that Z6 cannot always be considered a free module, I merely suggest that they look at

the example and let them discover the fact for themselves.
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Where the Moore method has the professor motivate a certain topic and then ask the students to

prove various explicitly stated theorems, I ask the students to write their own definitions, supply their own

examples, and conjecture their own theorems. If 20 students conjecture 20 different theorems, then it is

my job to ask them to pursue the most interesting conjectures. The most interesting conjectures, however,

are certainly not equivalent to the provable conjectures. I allow my students to go down the wrong path,

but I do not let them get too far afield.

Where more typical constructivist methods have the professor pre-design an activity based on the topic

of the day, my modules classroom has a more impromptu feel. One moment the students are discussing

module homomorphisms and the next they are talking about bases. Since the students determine to a large

degree what they will study on any given day, it is nearly impossible to prepare activities for the class.

Rather, I come loaded with dozens of examples that will illustrate many different aspects of module theory.

If the students conjecture that all torsion-free modules are free, I ask them to consider the rationals as

a module over the integers. If the students want to learn more about bases by actually computing some

examples, I help them organize their investigative activities. I ask teams of students to study different

families of examples and then bring the class together to discuss what each student and group has learned.

The students are very good at cranking out computations, assigning tasks within their small groups,

and generalizing results. (For example, if two students have computed HomZ.Z;Z3/ and HomZ.Z;Z4/,

the class will conjecture the structure of HomZ.Z;Zn/ in general.) But it is difficult for them to see more

subtle things, such as the limitations of their selection of examples. (For instance, they might not notice

that the only module examples they used for a particular activity are actually rings. Thus, they might

mistakenly conjecture that HomR.R; M/ is always a ring.) A well-placed comment, question, or new

example can provide clarification. (For example, I might ask \In the conjecture, can M be any R-module,

or does it need to be a ring?" Alternatively, I simply ask the students to check their conjecture against the

case where R D R2 and M is the set of points on the line y D 2x.)

Students work in groups of three or four of their own choosing for the duration of the term. For the

most part, each group studies the same mathematical topics, though they might be studied from different

points of view. For example, if the topic of the moment is homomorphisms of modules, one group might

focus on all the different homomorphisms they can find between two particular R-modules. Another group

tries to define a map between an R-module and an S -module. A third group decides to replicate the

isomorphism theorems in the module setting. Different points of view lead to a variety of conjectures, so

we spend some class time discussing each group's efforts.

Once the list of conjectures is whittled down to a manageable number, the students either prove a

conjecture or find a counterexample. Unlike the Moore method, the class will proceed even if a conjecture

is not resolved. Sometimes it takes only a day or two before a conjecture is resolved; sometimes it does

not happen until the end of the semester. All conjectures that we agree to pursue are proved or disproved

by the end of the term.

A typical class period ends with a list of conjectures, questions, and problems that each student or

group must research outside of class. Often, an individual group is particularly interested in a peculiar

problem, so it is responsible for considering an extra problem. A detailed example of a typical day is given

in Section 2.5.4 below.

2.5.3 Course Scheme

After a bit of review, the course begins with the following question: \What happens if we replace the

vector space axiom that requires an action of a field on an additive abelian group with the new requirement
that there is instead a ring acting on an additive abelian group?" The question sets-up the class to (at least
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initially) study modules over rings as an analog to the study of vector spaces over fields. This, of course, is

only one way to view a module, but it is a convenient way for the purpose of the pedagogical philosophy

of the course.

There is no text for the course, so most students have no idea that they are studying modules; in fact,

the term is never used. Moore explicitly told his students not to look at textbooks. I would do the same if

the students ever showed an interest in searching the library.

The analogy with vector spaces takes the students pretty far. They can use their background to define

modules (they come up with their own term for the new algebraic structure), submodules, homomorphisms

of modules, quotient modules, etc. They find examples of everything and prove old theorems such as the

isomorphism theorems (for modules), the kernel of a (module) homomorphism is trivial if and only if the

homomorphism is one-to-one, and the like.

But the analogy with vector spaces gets students into a quandary too. They quickly realize that the

notion of a basis does not carry over to the new module setting as easily as they had hoped. They bump

into the notion of torsion almost by accident, and it takes them into a new realm of mathematics.

While the Modules Course begins by exploiting the analogy between modules and vector spaces, it

ends by emphasizing the analogy between modules and abelian groups. In particular, I use the students'

knowledge of the structure theorem for finitely generated abelian groups (which I will refer to as the

FGAG theorem) as a road map to the more difficult structure theorem for finitely generated modules over

principal ideal domains (which I will refer to as the M/PID theorem).

Students can easily define torsion (torsion elements, torsion modules, torsion submodules). They un-

derstand that as algebraists they are generally more interested in sets that have nice algebraic properties

as opposed to those that do not. Thus, the students happily restrict themselves to looking at modules over

integral domains so that the torsion submodule of a module really is a submodule.

On their own, students see that a structure theorem for finitely generated modules should mimic the

FGAG theorem by splitting off free stuff from torsion stuff. It takes my interjection, however, to convince

the students that working over PID's is the correct setting. They have a slight notion that one needs (finitely

generated) torsion-free to imply free, but they have no idea that working over a PID will guarantee such

a thing. This part of the course is a key place where I truly feel the need to guide my students rather than

let them fumble around in the dark.

The course culminates in the M=PID theorem, but along the way we may get sidetracked by looking

at all sorts of ideas unrelated to the theorem. One of my three classes spent quite a bit of time considering

the structure of HomR.M; N /. Another class spent time considering multiple module structures on a given

abelian group and whether or not one could define a homomorphism between M as an R-module and N

as an S -module. These tangential issues are just as important as the M=PID theorem. I do not want to

stifle the creativity of my class, but I push towards the theorem because it is an excellent place to end the

course.

2.5.4 A Typical Day

In this section I give a detailed example of a single 85-minute class period that might occur during a term.

� Before class begins, the students have completed a homework assignment that grew out of the previous
class discussion. In this case, they defined a cyclic module and constructed examples.

� (10 min) The class begins with one group's presentation of its definition of a cyclic module. If other
groups have different definitions, they will be posted as well. Two standard student definitions for the

R-module M to be cyclic are:
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.1/ 9m 2 M such that M D hmi1 D fnm j n 2 Zg;

.2/ 9m 2 M such that M D hmi2 D frm j r 2 Rg:

The first is based on students' knowledge of cyclic groups, the second takes the R-module structure

into account.

� (5 min) All groups contribute examples based on their particular definitions.
� (10 min) To resolve the definition discrepancy, I ask the students if a cyclic module generated by an
element should actually be a module. After quickly agreeing, I ask them to construct cyclic modules

over RŒx� using the two definitions. Eventually they will find that the cyclic module generated by

x 2 RŒx� really is a module under the second definition, but not the first.

� (5 min) The RŒx� example gets a student thinking about the differences among the various kinds

of cyclic objects we have encountered in algebra. The student asks about the relationships among

cyclic modules, cyclic groups and principal ideals. For example, are all principal ideals also cyclic

submodules?

� (15 min) I suggest that the class break into their groups and ponder this question by examining cyclic
sub-objects of RŒx� considered as Z-modules, as R-modules, and as RŒx�-modules.

� (5 min) We take a break at about the 45 minute mark.
� (15 min) Groups report on the examples they computed and take notes on examples they had not
considered. The question on the differences among various kinds of cyclic objects is not resolved at

this point, but the issues raised by the question are more clear. Since I know this topic will not be

resolved in a few minutes time, I find a way to move on to another topic.

� (5 min) I ask the class what else there is in the world besides cyclic objects. The students remember
having studied groups that had more than one generator (most students have extensive experience with

dihedral and symmetric groups), so the idea of generating sets comes to the table.

� (5 min) A student volunteers a definition of a finitely generated R-module, and a discussion ensues.

� (5 min) The generating set definition reminds one or more students about vector space bases. I tell the
class that this is an excellent line of thinking.

� (5 min) Homework is assigned that must be completed before the next class. First, the students are to
pursue the question about the differences among various cyclic algebraic objects. Second, they are to

find examples of generating sets. Third, they are to define a basis of a module and find examples.

One can see from this description that I am not teaching the class so much as guiding it. I spend

a lot of time suggesting a variety of examples that the students had not already considered as a way of

illuminating thoughts and ideas. While I generally let the students' own questions determine the course

of study, there are certainly times when I try to steer them towards an idea. For example, my question

\What else is there in the world besides cyclic objects?" was carefully asked. The emphasis on cyclic
keeps the students thinking about generators, so it is no surprise that the next idea that pops up is about

generating sets. A different question (e.g., How many different isomorphism types of cyclic groups are

there?) would have urged the students down a different path (e.g., When R is a principal ideal domain, a

cyclic R-module is isomorphic to R=aR for some a 2 R).

A more standard class on module theory would not address many of the questions on which my students

sometimes spent significant amounts of time (e.g., defining a homomorphism from an R-module to an

S -module). We may not cover as much material as other classes, but my students do manage to learn a

significant amount and do so in a way that helps them understand the process of mathematics, not just the

results.
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2.5.5 The Students

Background

Students enter the Modules Course with a good undergraduate background in axiomatic mathematics.

Minimally, they have taken Linear Algebra (including real vector spaces and linear transformations) and

Abstract Algebra (including the basics of group theory, ring theory, and some field theory). They know

that algebraic objects are defined via a set of axioms, and that tweaking certain axioms leads to different

structures and different theories (e.g., abelian vs. non-abelian groups). They have dealt with sub-objects

(subgroups, subrings), special sub-objects (normal subgroups, ideals), homomorphisms, quotients, etc. And

they are familiar with a variety of examples of vector spaces, groups and rings.

Assessment

Requirements of the course include: classroom participation, homework, a journal, a final module paper,

and a research paper that is written and orally presented. All work is done in groups of three or four. It

is the students' responsibility to make sure that each group member is contributing to the workload fairly

or deal with the consequences. Group grades are given, with slight modifications made at the end of the

term.

Participation in class is clearly expected and is never an issue with the students; otherwise there would

be no course. Often, a group has a spokesperson, but every member of a group is expected to contribute

to the work.

Homework is really part of the participation component of the course. Students generate questions and

conjectures throughout the term which they are to investigate both inside and outside of the classroom.

Sometimes I ask them to do something explicit such as find five examples of modules with torsion; other

times they are to come up with a question to ask about modules with torsion.

The journal is submitted every two weeks, and is intended to be an organized set of class notes. Given

the nature of the course, lines of thought are not presented linearly nor even logically. Even my own notes

are jumbled, so I ask the students to clean up their notes in order that definitions, examples, conjectures,

theorems, and proofs are clearly marked. Responsibility for the physical task of writing the journal rotates

through the group members.

The final paper on module theory is to be written as though it were a textbook chapter on module

theory. Journal submissions become source material for the paper but a higher level of organization is

added. The paper is the culminating product of the course, so much time and effort is put into its writing

and rewriting.

For the research project, groups either truly research a question related to algebra (not necessarily

module theoretic) or study a special topic such as Wedderburn's theorem on finite division rings or a tidbit

from Galois theory. Results are written in a form expected by a mathematics journal, and presented orally

during the last few days of the term.

Students' final grades are based mostly on their group's work on the two papers. Individual mod-

ifications to the group grade are based on both my and peer assessment of the particular individual's

contribution to group work. Amazingly, measurements of individual contributions to the group effort sub-

mitted by each group member during the peer assessment process associated with each paper are virtually

in agreement with one another. Thus, the measurements can be used to help tailor grades to the individual.

Student Interactions

Students work exclusively in their own groups during class time, though the groups do interact in order

to challenge conjectures or clarify points made by others. In part they stick to their own groups because I
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often assign different tasks to different groups. On the other hand, there is a good deal of mingling among

the whole class of students outside of the classroom when there is a common assignment to be completed.

In every course I teach, I encourage students to work together both inside and outside of the classroom,

but never is group work more successful than in the Modules Course.

Along with working together on mathematics, the students seek my help both in the classroom and in

my office. Regardless of the location, I am always careful not to give too much away. Even in my office

hours I continue to encourage students' self-discovery of the facts of module theory. Their questions are

often met with suggested avenues of inquiry rather than with easy answers. For example, if we are the

middle of class discussions about module homomorphisms I will not tell an inquiring student whether

or not HomR.M; N / is a group or an R-module, but I will suggest that the student investigate some

examples then try to generalize or make conjectures based on the calculations. If the student comes back

to me two days later with computations and conjectures in hand but is still confused, then I am more apt

to provide an actual answer to the question.

Reactions

I had about 60 students spread among the three Modules Courses I taught using guided discovery. All 60

felt overwhelmed and lost at the beginning of the course (\Sometimes [we] were not always sure where

we were" was one student comment). Many students are accustomed to doing mathematics, but very

few are familiar with creating mathematics. Mathematics can be a frustrating endeavor for professional

mathematicians, let alone undergraduates. A few weeks into the course, students figure out what I expect

of them, how the course is being conducted, and the dynamics of their groups. Near the middle of the

course they realize that they actually do know some mathematics and can use their foundation to generalize

familiar ideas and create new mathematics. At this point they are comfortable asking questions and are

unafraid of chasing what might end up being fruitless or simply uninteresting ideas. At the three-quarter

mark we are deep into theM=PID theorem, which is challenging for the students, but they also understand

that they are learning and creating substantial mathematics. The biggest challenge at this point is keeping

the students focused. They begin to feel that they have learned a bunch of unrelated junk and they start to

forget basic things such as the definition of a module. The journal requirement is intended to counteract

this feeling, as is the final module paper. By the end of the term the students are exhausted, but in writing

their papers they realize how much they have learned and created and how well ideas flow together and

culminate in theM=PID theorem. The paper is an essential ingredient in the success of the course (\Being

cut loose to work on the project . . . was one of the most worthwhile things I've done as an undergraduate").

When the students come out of the course they have a better sense of what it is like to be a mathematician

(\The format of the class . . . provided insight into the methods of mathematical inquiry" and \I felt like a

mathematician" were two student comments). I believe they are happy to have had such an experience (\It

is amazing to find a math class that is so fun"), but they are equally happy that not all of their mathematics

courses are conducted in this manner.

2.5.6 Conclusion

My own reaction to the course is that it is exhausting, challenging, and invigorating. It is much easier to

have complete control over a class than to give up that control to 20 young undergraduates. It is challenging

to make sure that the students learn some mathematics while trying to keep quiet about the paths of study

they choose to take. It is invigorating to help students learn to create mathematics. Most mathematicians,

including myself, did not get such an experience until beginning work on our doctoral dissertations. Most
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of our students will not get PhD's, so experiencing the guided discovery approach allows them one of

their few opportunities to peek into the world of a mathematician.

I have thoroughly enjoyed my three experiences using guided discovery at the senior undergraduate

level of mathematics, but I will not use the approach in every class I teach. The energy level required to

conduct such a class successfully is prohibitive. I might feel otherwise if my class sizes were smaller than

20, but guiding 20 students (or five groups) on their own paths to discovery is like having five distinct

classes to teach on top of an already demanding teaching load. Nonetheless, I will use guided discovery

again in a senior seminar setting.

While the Modules Course and a Moore method topology course differ drastically in fundamental

ways (small group work vs. individual work, choosing the course of study vs. proving pre-determined

theorems), they share a crucial reliance on axiomatic subject matter. It is a student's background in

axiomatic mathematics and her drive, in contrast to mathematical talent necessary for success in a Moore

method course, that enables her to succeed in something like a Modules Course. More generally, I believe

that discovery learning at the level of theoretical mathematics is only truly effective if students have a

solid education in prerequisite courses.
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Introduction

The third chapter relates undergraduate mathematics to areas which were not an object of study just a few

years ago. The paper by Timothy O'Brien of Loyola University Chicago discusses biostatistics courses

that enroll both mathematics and biology majors. These courses use student projects to evaluate or limit

the results of research papers in the biological sciences that use statistics as a tool. The paper by Janet

Andersen of Hope College describes a team-taught sophomore level course in Biology and Mathematics.

This course analyzes research papers that use matrices or differential equations in their development. In

both cases there is a great deal of emphasis on student participation and presentations.

The subject of the next two papers in this chapter is voting theory, an ongoing area of mathematical

research whose results are accessible to undergraduates. These two articles are a bit different from the rest

of the papers in this volume in that the focus is more on the mathematical content of voting theory and a

bit less on the approaches used to present this content to the students. These papers also serve in a certain

sense as primers for both faculty and students in an area where there are no appropriate undergraduate

texts available. In the first article, Tommy Ratliff of Wheaton College discusses the geometric framework

underlying some of the recent results obtained in voting theory. The course, whose prerequisite is a course

in discrete mathematics, makes active use of student readings, papers, and projects. One of its goals is

to make students better aware of the choice procedures available to them when they make decisions. The

other paper, by Michael Haines of Augsburg College and Michael Jones of Montclair State University,

is directed toward instructors who want to incorporate results from voting theory into upper division

mathematics courses. In addition to providing the basic background needed to access, for example, some

of the material in the reference section, this paper also discusses how the material can be used in different

courses.

In the fifth and last paper in this chapter, Robert Lopez, formerly of Rose-Hulman Institute of Tech-

nology and now with Maplesoft, discusses, in the context of a classical applied mathematics course, how

a computer algebra system should be the working tool for teaching and learning in a variety of upper

division courses. The article stresses the importance of integrating the algebra system into all parts of the

course and not merely using it as an add-on to solve problems.

Taken together, these five papers offer an insight into some areas ripe for future development. They

serve as a reminder that our goal is not only to improve the quality of our major classes but also to make

our offerings attractive to people outside our major who need additional work in our area in order to make

their own pursuits more productive. The end results will be beneficial not only to our students but also to

our profession as a whole. We will attract more students, more interested students, in the process.
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3.1
The Importance of Projects in
Applied Statistics Courses

Tim O'Brien

Loyola University Chicago

3.1.1 Introduction

While in the past statistics courses may have emphasized formulae and summarizing data, the focus today

is more on the importance of statistics in answering researchers' queries by obtaining essential information.

As a result, today's students see statistics as an aid to the research process. For example, statistical methods

associated with the field of bioinformatics have come into prominence over the past decade to provide

biomedical researchers with the statistical tools necessary to detect patterns in very large genetic data sets

similar to those resulting from the U.S. Human Genome Project. Modern statistics courses stress both the

practical applications of statistical methods and the active participation of students in the learning process.

Undergraduate and graduate programs in statistics, such as the ones recently revised at Loyola University

Chicago, typically emphasize both the statistical applications in coursework and the involvement of students

in the statistical consulting activities of faculty members. One tangible result has been the development of

a sense of confidence on the part of students when tackling methodological challenges that go beyond the

classical course in introductory statistics.

Like many U.S. universities, faculty at Loyola are involved in teaching an array of courses in theoretical

and applied statistics. These include introductory courses for less technically oriented students and more

mainstream undergraduate courses for statistics and biostatistics majors and minors. Many of these courses

require student participation through projects, papers and/or class presentations. The focus of this article is

to discuss some of the ways in which these activities help students understand the usefulness of statistical

tools in a broad spectrum of fields. Specifically, the focus here is on the use of projects in Loyola's one-

year biostatistics sequence (which is typically attended by premed students majoring in biology) and in

follow-up courses in applied regression analysis, categorical data analysis, experimental design, statistical

software packages, nonlinear modelling, and optimal experimental design. We provide several examples

that illustrate how these projects have become an invaluable tool in the teaching of applied statistics and

biostatistics courses and how they provide students with increased confidence by allowing them to obtain

the tools necessary to master sophisticated statistical techniques.
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3.1.2 An Introductory Biostatistics Course

The public understandably can become confused when studies such as the one described in Pope et al. [23]
report an association between sulfur-oxide pollution and both lung cancer and cardiopulmonary mortality

while other studies find no such association. Modern students of biostatistics are taught to critically examine

the underlying statistical techniques used in these studies before considering the conclusions reached.

Thus the fact that Pope et al. [23] adjusts for study biases by using an extension to the commonly-used
Cox proportional hazards statistical survival model (Zar, [28]) to adjust for dependent observations lends

significant credence to the paper's findings. Students now understand that merely applying a statistical

technique without regard for necessary assumptions can easily lead researchers to dubious or incorrect

conclusions.

In order to provide introductory biostatistics students with basic statistical tools, these courses typically

cover an introduction to probability (including an appreciation of the relevance of the Central Limit

Theorem), regression and correlation, one- and two-sample t-tests and generalizations to single- and multi-

factor analysis of variance (ANOVA) and covariance, and an introduction to categorical data analysis that

includes basic chi-square tests. Instructors in these courses usually find that they do not have enough time

to cover very relevant intermediate-level topics such as odds-ratios and relative risk, logistic and non-

linear regression, non-parametric methods, baseline-category logits, the proportional odds model, etc. As a

result, introductory students often are left unaware not only of some of the limitations of and assumptions

underlying introductory statistical methods but also of the relevant extensions of these methods provided

in more intermediate-level courses. Equally disturbing is the (not infrequent) situation in which courses

in statistical methods are taught by non-statisticians (such as biologists or psychologists), who may be

unaware of these limitations and assumptions. For example, Samuels and Witmer [24] provide a 4 � 2

table of data relating pain relief (with levels none, some, substantial, and complete) to treatment received

by the patient (drug A versus drug B) with the caveat that the usual chi-square test is inappropriate in

this situation. Yet it is unclear how many non-statisticians would know the correct statistical technique to

analyze these data. Statistical educators must do a better job of helping students develop skills beyond the

level of the usual introductory course. We have found that class projects provide an excellent opportunity

to do just that.

Loyola's introductory undergraduate biostatistics course is offered through the Department of Math-

ematics and Statistics and cross-listed in the Biology Department. The course has been redesigned with

the idea of developing a student's critical eye through the use of course projects. This course is called

STAT/BIOL 335 and usually enrolls about 40 to 50 students per semester. The course syllabus can be

viewed on the Web at

http://www.math.luc.edu/~tobrien/courses/stat335/Fall-2003/syllabus.html.

Instructors of this course invariably point out the advantages and limitations of each of the techniques

discussed in the course. As a result, students learn to be somewhat skeptical of studies employing dubious

assumptions or involving only ten subjects in each treatment arm. Since time constraints do not permit

exposure to many of the intermediate topics mentioned above, we have found that these subjects are well

suited for students' class projects.

Class Projects

For their projects, students are given the choice of either (1) analyzing a sufficiently rich data set and

writing up and presenting their findings to the class or (2) critiquing the statistical aspects of two research

articles of their choosing from professional journals such as The Lancet, New England Journal of Medicine,
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AIDS Journal, Ecology, and the like. The only requirement of the data set or research articles is that the
statistical methods involved in the data set or article go beyond the level of the class, including topics

from such fields as survival analysis, nonlinear or logistic regression, and repeated measures. In order to

find a relevant data set or collection of articles, students first identify research fields of interest to them.

This usually requires several meetings between the instructor and each student in order to get the students

focused on a data set or articles at an appropriate level. Students then are required to obtain the tools

needed to critique or implement the given statistical techniques by consulting intermediate biostatistics

textbooks such as Zar [28] or the Encyclopedia of Biostatistics (Armitage and Colton [2]). Ultimately,
students are required to write up their findings or critique in a three to five page paper.

We have found that in the early stages of a project instructors act as mentors only to the extent of helping

students to identify relevant research articles or data sets or to find resources such as textbooks where the

students can then learn about the statistical techniques employed in their articles or needed to analyze their

data. After this initial phase, students learn via self-study the relevant statistical methodologies so that they

can then critique the use of these methodologies in the chosen research articles. For example, a student

may need to read through a textbook's chapters on bioassay analysis and mixed nonlinear regression. In

student evaluations, students have commented how this latter phase has helped them develop confidence

in their ability to further their own formal and informal study of intermediate and advanced statistical

methods.

In their class papers, students first give a short summary of the goal of the research and the hypotheses

studied in each article or provide the important characteristics of the data set they have analyzed. They then

focus on the mechanics of the new statistical tools encountered and on the adequacy of their implementation

in the article or data set. Students' projects and papers are then evaluated on their criticism of the statistical

techniques employed in the two articles, their understanding of these techniques as evidenced by their

criticism, and their writing style, including grammar and punctuation. Since undergraduate students rarely

have access to rich data sets, our STAT 335 students almost invariably choose to critique research articles.

Yet when the author offered a similar introductory biostatistics course to graduate students at Loyola's

Medical School during the Spring, 1999 semester, the opposite situation occurred. These latter students

opted to use sophisticated statistical techniques on the data sets provided by their research advisors. The

class project helped show these students the usefulness of applying intermediate statistical techniques in

their own research.

To illustrate some of the mechanics of the class project for this introductory biostatistics course, we

now describe the projects of two undergraduate Biology students, Jennifer Huston and Nick Moisan.

Example: Jennifer Huston

For her class project and paper, Jennifer Huston critiqued the statistical techniques used in the article by

Walrand et al. [27], which investigates the relationship between age and the ability to renourish the body,
and by Lau et al. [17], which examines the relevance of mite and cat allergen exposure for the development
of childhood asthma. The former article used a two-way ANOVA design and analysis for some response

variables and a principal components analysis (a data-reduction technique) for other variables for a small rat

study. Thus, as was the case for all students, it was necessary for Jennifer to learn the necessary assumptions

required to use these advanced techniques. In her paper, she correctly pointed out the limitations (such as

the inherent assumption of normality) and potential biases in their application in a study involving only 6

rats in one of the study groups.

For her second article, one of the response variables was ordinal in nature (\current wheeze," \wheeze

ever," and \doctors' diagnosis of asthma"), so a multiple logistic proportional odds model regression was

used. Once again Jennifer focused her comments on potential shortcomings of the use of this model in
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light of influential observations and potential outliers. Jennifer's project thus showed her the usefulness of

statistical techniques in medical research and underscored the often-overlooked underlying model assump-

tions. Jennifer also mastered some rather sophisticated statistical techniques. In her course evaluation she

mentioned that she now felt confident that by knowing where to obtain the necessary resources she could

teach herself the statistical methodology useful in analyzing many medical studies.

Example: Nick Moisan

While the articles critiqued by Jennifer were relatively similar and typical of clinical and pre-clinical re-

search, the articles examined by NickMoisan provided a study in contrasts. Nick's first article, Krabbendam

et al [16], which appeared in the Journal of Neuropsychiatry, examined whether a relationship exists be-
tween deficits in cognitive processing and the temporal and limbic volumes in the brains of humans.

Typical of many articles appearing in psychology-related journals, this study based its conclusions on a

small number of subjects and used a multivariate analysis of variance (MANOVA) design and several

MANOVA analyses. In contrast, Nick's second article, Kernan et al [15], used a case-control study to test
for a link between phenylpropanolamine (present in cough and cold remedies) and hemorrhagic stroke.

This latter article appeared in the New England Journal of Medicine, and (as is often the case in medical
research) employed logistic regression and odds ratios to draw inferences. Its conclusions were based on a

very large study enrolling over 2100 subjects randomly selected throughout the United States. As a result

of this project, Nick was able to see the wide application of statistical methods in diverse settings and to

understand some of the subtle distinctions in the level of statistical sophistication in disciplines such as

psychiatry and medicine. As was the case with Jennifer, Nick developed a great deal of confidence in being

able to teach himself complex statistical techniques. Not surprisingly, both of these students continued their

studies in applied statistics by taking additional statistics courses offered by our department. In addition,

several Biology students with similar interests have decided to pursue Loyola's new minor in Biostatistics.

Both of these examples illustrate some of the benefits of using projects and papers in introductory

biostatistics courses. Students invariably observe that statistical techniques are misused in otherwise pres-

tigious research journals. Furthermore, these students also develop an important level of confidence in

their ability to understand the necessary requirements and assumptions for statistical tests. They also learn

effective communication skills through their written papers and/or their class presentations. Finally, they

gain a sense of independence and confidence in their ability to locate resources, both on-line and in the

university library, which further their understanding of advanced statistical techniques.

3.1.3 An Advanced Biostatistics Course

Responding to requests from introductory biostatistics students to offer a follow-up biostatistics course,

Loyola's Department of Mathematics and Statistics offered an advanced-level biostatistics course during

the Spring 2001 semester. This course focused on many of the theoretical and methodological aspects of

the statistical techniques highlighted in the introductory projects and papers. These included the statistical

techniques used in survival analysis, nonlinear and generalized linear regression, and clinical trials. The

current class syllabus, notes and assignments can be viewed on the Web at

http://www.math.luc.edu/~tobrien/courses/ab/course-homepage.html

This course, also cross-listed with Loyola's Department of Biology and called STAT/BIOL 336, was

attended by twelve students, six from the Biology Department and six from Math & Statistics, and presented

the additional challenge of structuring a new course for a rather diverse group. The course was taught using
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class-notes based on material from Agresti [1], Bates and Watts [4], Davidian and Giltinan [7], Littell et
al [18], McCullagh and Nelder [20], Pinheiro and Bates [22], Stokes et al [25], Venables and Ripley [26],
Zar [28]. Material from Ewens and Grant [9], Harrell [13] and Johnson and Wichern [14] was added for

the Spring 2003 version of the course. The Minitab®, SAS® and S-Plus® statistical computer packages

were used in class handouts and by students in their assignments.

Class projects also were used in this course but, since the class-size was small, students were required

to work in pairs in order to foster interpersonal communication skills. The student population was quite

diverse in terms of mathematical sophistication, so these teams paired one quantitative student and one

biology student. As in the introductory biostatistics course, class projects were used in this course to stretch

students beyond the level of the course. With such a small group of students, each of the six student-pairs

was required to make a presentation to the class. Mentoring and assessment followed along the lines of the

project for the introductory course, but part of the advanced class project grade also reflected the quality

and clearness of the class presentation. The following example, which focuses on the statistical detection

of the interaction of anti-HIV drugs, is typical of the projects from this course.

Example: Mike Evans and Bahram Patel

Since they were interested in HIV research, Mike Evans and Bahram Patel chose to examine the data

provided in Machado and Robinson ([19], p 2304) to test the synergistic or antagonistic nature existing

between the anti-HIV drugs AZT (Zidovudine) and ddI (Videx). For this study, the amount of the HIV-1

(strain LAV-1) virus present was measured by reverse transcriptase (RT) activity. With the help of the

course instructor, these students used the SAS® statistical software package in a somewhat novel fashion

to fit to these data the 5-parameter log-logistic dose-response (nonlinear) model

� D �1

1 C . z
�2

/�3

where � = E(RT) is the expected amount of RT and where

z D AZT C �4ddI C �5

p
�4 � AZT � ddI

is the effective dose of the anti-HIV drug. For this study, the key model parameter is �5, the so-called

\coefficient of synergy." For this parameter, statistically significant negative values indicate antagonism and

significant positive values indicate synergy of the study drugs. The instructor pointed out to these students

that this model was applied in Gerig et al. [10] to the detection of the antagonistic joint action of similar
compounds in the growth of cucumber seedlings and the model assumptions were subsequently verified

for Gerig's cucumber data. When this model was fit to the HIV data, Mike and Bahram's preliminary

results failed to detect significant synergy between these two drugs, a result which would then lead some

researchers to conclude that the two drugs act independently. But upon inspection of the model residuals,

the students noted that the variability in RT tended to decrease with �, and thus that one of the key

assumptions (equal variances) was violated. When this heterogeneity of variance was then incorporated

into the model by letting the variance be of the form �6��7 , the estimate of the coefficient of synergy

became significantly positive. This led Nick and Bahram to conclude correctly that the two HIV drugs do

indeed enhance one another.

Thus, even though the statistical methods employed in this project were rather sophisticated, Mike

and Bahram observed first-hand the importance of checking the underlying model assumptions. They

also learned something about the wide applicability of nonlinear models in biomathematical modelling.

These students also correctly pointed out that the findings of the above study have led biologists to study
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the physiological mechanisms involved, which in turn would explain the synergistic effects of these two

commonly used HIV drugs. Since modelling both the mean and the variance is becoming more and more

necessary in bioassay studies, this example provided all the Advanced Biostatistics students with additional

statistical tools.

It is worth noting that we have used class projects in the introductory biostatistics course to provide

students with confidence in their ability to obtain the necessary knowledge and skills to criticize the

application of statistical techniques performed by biomedical researchers. But we also have used class

projects in more advanced courses to analyze medical data in a more sophisticated and novel manner so

as to better test researchers' hypotheses.

3.1.4 Subsequent Applied Statistics Courses

In addition to the introductory and advanced biostatistics courses, we also have found that class projects

are a useful tool in other intermediate and advanced applied statistics courses, highlighting the usefulness

of projects for both non-major and major statistics courses. For example, we have found that courses in

categorical data analysis (CDA), applied regression, experimental design, and statistical software packages

can benefit from class projects, papers, and presentations as well. The following examples, which involve

the application of statistical methods in fields as diverse as medicine, sports, and anthropology, illustrate

this point.

Example: Dara Mendez

As both an employee of an area pharmaceutical company and a part-time Loyola student, Dara Mendez

enrolled in a CDA course offered during the Fall 2000 semester both to further her knowledge in this area

of great practical importance and to help her in her role as a pharmaceutical biostatistician. Once again,

projects were used to push students to develop the skills required to master a topic beyond the level of

the course. As a result, students' final class presentations were more pedagogical in nature. After being

provided with the necessary resources, students required only minimal mentoring to accomplish their goals.

Once again, they were required to write up their results in the form of a three to five page descriptive

paper, which they then distributed to their classmates in conjunction with their 15-minute presentation on

the given topic. Topics were chosen (jointly by instructor and student) from those related to the study of

CDA but which were slightly above the level of the class. Some of the areas covered included bioassay,

nonparametrics, sample-size determination, and pharmacokinetic mixed-effects modelling.

For her project, Dara chose to focus on the statistical methodology involved in quantile bioassay

analysis. Using both the data provided in Stokes et al. ([25] pp 331-2) and some data from her work

projects, Dana illustrated how statistical methods can be used to quantify the potency of an experimental

drug relative to a standard one. As a former Biology student, Dara focused her class presentation on the

implications of bioassay and the relative potency of drugs in pharmacology. This allowed her to provide

both the required framework and larger picture to her classmates. As a result, Dara's classmates benefited

from an informative presentation and learned just how prevalent these course methods are in the workplace.

And Dara mastered the theoretical justifications and techniques for the methodology she had been applying

on the job.

Example: Paul Bell

Ever interested in the use of statistical methods in sports, Paul Bell viewed the class project for his applied

regression course during the Spring 2000 semester as an opportunity to use data that he had obtained to



3.1 The Importance of Projects in Applied Statistics Courses 121

develop statistical models to predict the attendance at major-league baseball games in Chicago, Atlanta,

and Oakland. For this course, students were required to obtain sufficiently rich data sets to analyze. They

then wrote up their findings in a course paper and conveyed them to their classmates via a classroom

presentation.

Paul's data was based on the 1999 baseball season and his multiple-regression models included vari-

ables such as the day of the week, weather outlook, game number, and the level of the opposing team. Paul

then tested his models using 2000 attendance figures and all of his prediction intervals contained the actual

reported attendance. The research for this course project earned Paul a Loyola Mulcahy scholarship/grant

which enabled him to continue his research with the author. A description of these grants can be found on

the Web at the website http://www.luc.edu/depts/prehealth/Mulcahy.htm. This grant covered the

cost of obtaining his data as well as his travel expenses to Vancouver in June, 2001, to present his findings

at the International Biometrics Society conference. As a masters level Statistics student, this experience

has proven very beneficial to Paul's professional development.

This class project provided Paul with the opportunity to see how statistical methods can provide

predictive models in a research area of special interest to him. His results have aided others interested in

predicting attendance at major sporting events, such as stadium managers, area law-enforcement personnel,

and mass-transit coordinators. Paul presented his class project findings to the larger Loyola community in

a university seminar and has submitted his results for publication in the applied statistics journal Chance.

Example: William Burroughs

An undergraduate anthropology major, William Burroughs, enrolled in a course in statistical methods and

software packages (STAT 303) during the Spring 2001 semester to learn how to use statistical methods

to analyze anthropological data. He chose to examine a paleopathology data set provided by his advisor,

Loyola Anthropology Professor Anne Grauer, for his class project and presentation. Projects were used in

this class in much the same way as they were for the applied regression course described in the previous

example. Students were required to obtain sufficiently rich data sets which they then analyzed and discussed

in a class paper and presentation. This process again served to stretch students beyond the level of the

material presented in the course.

Professor Grauer's data is related to human skeletal remains (skulls) from medieval England and was

used to predict the incidence of a specific disease related to anemia as a function of the age of the subject

at death. These data lend themselves to the use of the logistic function

E.p/ D e˛Cˇx

1 C e˛Cˇx
;

which relates the expected probability of the disease at death (p) to the subject's age at death (x); here ˛

and ˇ are the model parameters to be estimated from the data. Of special interest to these researchers was

the estimated age at which the expected probability of the disease is 50%, denoted x50. After the model

was fit to the data, William noticed a distinct pattern in the residual plot that indicated the inadequacy

of this model. With some assistance from the instructor with regard to the statistical methods involved,

William then wrote a computer program that used a Box-Tidwell transformation (Samuels and Witmer,

[24] p 53) where x = (age)' was used in the above model in place of x = age. This latter extension

was validated since the subsequent residual plot showed the required random pattern. William's analysis

highlighted the importance of this transformation since the estimate of x50 dropped from 31 years for the

(incorrect) naive logistic model to approximately 20 years for the transformed logistic model.

Through his class project, William came to understand the importance of testing model assumptions and

of extending existing statistical methods to fit real-life situations. In addition, while the original analysis
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performed by Professor Grauer, which involved a chi-square test, was very weak (in terms of statistical

power) for this study, the application of the generalized logistic model was novel and provided a more

direct answer to the important research queries. As the result of his class presentation, William's classmates

understood the usefulness of sophisticated statistical techniques in the field of anthropology.

The class projects for this course involved somewhat more mentoring on the part of the instructor

since the statistical prerequisites for the course were indeed modest (some exposure to basic statistics). In

addition, the emphasis of the course was more on developing students' statistical programming skills and

less on requiring that they master a subject area in applied statistics. All the same, the projects provided

students with a sense of confidence and appreciation of the usefulness of applying statistical methodology

to real-life data.

3.1.5 Independent Study Courses

As is often the case, class projects in introductory and intermediate courses spark student interest in

furthering their studies in statistical fields involving their specific research interests. As a result, a number

of follow-up independent study courses have been offered for the more advanced students. The following

two examples discuss the development of independent study projects with advanced undergraduate and

graduate students enrolled in Loyola's Department of Mathematics and Statistics. These examples illustrate

how class projects at this advanced level typically entail assisting a faculty member in cutting-edge research

in statistical theory and methodology.

Example: Lisa Leigh and Katie Hanrahan

The exposure to logistic and log-linear models in a basic course in categorical data analysis during the

Fall 2000 semester sparked the interest of Lisa Leigh and Katie Hanrahan in the larger field of nonlinear

regression methods. As a part of an independent study course, each student worked through the text of

Bates and Watts [4] with the author during the first half of the Spring 2001 semester. During the second

half of the semester, each student assisted in research by focusing on separate problems related to nonlinear

regression. Lisa concentrated on using SAS® software to obtain curvature measures for Gaussian nonlinear

models while Katie centered on extending these curvature measures to cover non-Gaussian nonlinear models

such as the odds-ratio, relative-risk, and logistic models.

Each of these class projects (independent study courses) required a great deal of mentoring by the

instructor (several hours per week over the course of the semester). Assessment and evaluation was based

on the final reports prepared by each student, including the quality of the corresponding computer programs.

The benefit to the instructor in terms of quality research was significant since Lisa's input helped with the

results developed in our recent submission, Haines et al. [12], to Statistica Sinica. The work with Katie
resulted in a presentation by the author at the XXXIIIemes Journees de Statistiques conference in Nantes,

France in May, 2001.

Through these class projects, Lisa and Katie mastered the course material in applied nonlinear regres-

sion. They were also given the opportunity to gain hands-on experience doing cutting-edge research in

statistical methods which has helped each of them identify fields of interest for future study and research.

Example: Paul Bell and Nick Pajewski

The use of existing data sets, such as the HIV data set discussed earlier, to fit linear and nonlinear statistical

models naturally leads one to wonder whether a better-designed study could provide researchers with the

same amount of information but with fewer experimental runs. This is precisely one of the major goals of
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the field of optimal experimental design, and follow-up projects (independent study courses) along these

lines were proposed by Paul Bell and Nick Pajewski for the Spring 2002 semester.

With the author's guidance, Paul and Nick worked through the material presented in the optimal design

textbook of Atkinson and Donev [3]. As with the previous example, this project required a great deal of

mentoring on the part of the instructor. As examples were encountered in the textbook, Paul and Nick

alternated in developing the necessary computer programs to obtain and verify the optimal designs and the

design methodology using the SAS/IML® programming language. With the instructor, Nick and Paul then

worked through the papers of Downing et al. [8] and Haines et al. [11] and wrote SAS/IML® computer
programs to obtain the optimal designs for the models presented in these papers as well as for the logistic

and the synergistic HIV models discussed above. Nick and Paul were evaluated on their mastery of the

optimal design material, on the quality of their computer programs, and on their final reports.

This project served to unify the information learned in such diverse courses as applied linear and

nonlinear regression, categorical data analysis, experimental design, and statistical software by providing

practitioners with efficient design strategies. Since in some cases optimal designs with only half as many

runs provided the same level of information as those actually used, Paul and Nick now understand the

importance of a well-designed study in terms of cost-savings.

3.1.6 Evaluation and Assessment

The assessment of student projects is an ongoing process. In lower level courses, students are given

milestones that they must meet if the project is to be accepted. For example, they must come up with five

potential research articles to critique by a certain date. They must meet with the instructor by a certain

(later) date to go through the papers and come up with the two articles to critique. And they must complete

the three to five page paper by a certain date. The upper division courses tend to enroll more mature

students and the list of deadlines might not be as long. But in either case, failure to meet any deadline is

factored into the project/paper grade, which counts for 15% of the course grade.

The evaluation of a student project is much more than making a judgment on the quality of the student's

writing. The student typically meets with the instructor two or three times during the last month of the

course. During these meetings the instructor can evaluate the student's preparation, judge how much effort

is being put into the project and to the course in general, and when appropriate gently push a student to

work harder. The project assessment process also helps with the overall assessment of the student.

When the project finally is submitted, the students also must include the related research articles. The

instructor then goes through the research articles again before actually reading the paper. The projects are

evaluated both on grammar and structural flow and on how well the students understand and discuss the

new statistical methods used in the research articles. For example, a research article might use a repeated

measures design in which patients are randomized into treatment and control groups, with the results

measured over a period of time. Then the student writing the paper must address the fact that the repeated

measurements are correlated and that standard statistical techniques do not work. This must be followed

by a description and evaluation of the more sophisticated methods that this particular setting requires.

3.1.7 Conclusion

Many statistical educators feel that providing cookbook courses in statistics only furthers the misconception

that statistical methodology is a static domain with only limited applicability in practice. In contrast, the

above examples show that the field of applied statistical research is constantly evolving to meet the needs

of the end-user. Applied statisticians who engage in consulting are well aware that it is not enough to
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possess a statistical toolkit from which the proper tool is produced to solve the researcher's problem.

The successful statistical consultant must develop the ability to meet and address challenging statistical

problems with innovative, novel solutions.

As has been seen throughout this article, class projects are beneficial in this regard. They also are use-

ful in underscoring the dynamic nature of our domain by highlighting the fact that statistical consultants
are continuously learning new techniques and refining old tools so as to better address the problems of
researchers. Class projects remind students never to simply accept the results of a given statistical test

or prediction without first understanding the underlying assumptions and limitations. Students learn this

as they observe situations in which medical researchers inappropriately apply statistical techniques which

violate necessary model assumptions. They also learn this by being exposed to situations in which the

preliminary (incorrect) analysis leads researchers to an incorrect conclusion. These projects help students

develop the critical eye and questioning spirit required of a successful researcher seeking to better under-

stand their field. Finally, by requiring students to go independently beyond the standard course content,

the class projects provide students with the sense of confidence needed to master new fields of applied

statistics and to become intelligent and critical statistical consumers and consultants.
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3.2
Mathematical Biology Taught to a Mixed

Audience at the Sophomore Level

Janet Andersen

Hope College

3.2.1 Introduction

The interface of mathematics and biology is an exciting area of research and an opportunity for changes

in the curriculum. Funding agencies such as the National Science Foundation and the National Institute

for Health are exploring or initiating programs to support this interface. Biology 2010, a report published
by the National Research Council, delineates a curriculum for biology majors that is more mathematically

intensive than what currently exists at most institutions. Talks related to mathematical biology can now be

found at almost all national and regional MAA meetings.

At this point in time, most mathematical biology courses are either modelling courses designed for

upper-level mathematics majors or lower level courses (typically with minimal mathematics prerequisites)

designed for biology majors. Examples of textbooks used for such courses include Mathematical Models
in Biology by Leah Edelstein-Keshet, Mathematical Biology by J.D. Murray, Mathematical Models in
Population Biology and Epidemiology by Fred Brauer and Carlos Castillo-Ch �avez, Understanding Non-
linear Dynamics by Daniel Kaplan and Leon Glass, Population Biology by Alan Hastings, and A Course
in Mathematical Modeling by Douglas Mooney and Randall Swift.

At Hope College, we chose to take a different approach. With the support of a National Science

Foundation grant (NSF-DUE 0089021), we developed a team-taught mathematical biology course targeted

at a mixed audience of mathematics and biology majors. The prerequisite for the mathematics students

is completion of a linear algebra and differential equations course while the prerequisite for the biology

students is completion of a sophomore-level course on ecology and evolutionary biology plus first semester

calculus. We are assuming that the mathematics students do not know the biology and that the biology

students do not know the mathematics. We organize the course by teaming these two audiences with the

goal of critically reading biology research papers that incorporate mathematical models involving matrix

analysis or ordinary differential equations.

3.2.2 Logistics and Course Objectives

Dr. Greg Murray, an ecologist at Hope College, and I developed this course. From the beginning, we

decided to use biology research papers rather than a textbook. We want students to understand that the use
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of mathematical models is wide-spread in current biological research and that understanding such models

is crucial to interpreting results. The course meets for three hours each week in lecture and for three hours

each week in a wet lab. We think it is important that mathematics students gain an intuitive understanding

of the biology by actually doing labs. Similarly, it is important that the biology students gain an intuitive

understanding by doing the mathematical calculations (rather than solely using software packages).

Our course goals are for students to learn:

� How to communicate with someone in another discipline
� How to critically read research papers
� About areas of research that combine the study of mathematics and biology

These goals are intentionally process oriented rather than content oriented. Students do learn new

mathematics and new biology. On the end of the course evaluation, biology students reported their learning

of new mathematics was at 4.2 while the learning of new biology was 1.8 (both out of a scale from one

to five). Mathematics students reported their learning of new biology was at 3.4 while the learning of new

mathematics was 2.2 (both out of a scale from one to five). For both audiences, the item that received the

highest rating was learning how to critically read research papers (with an average of 4.4 out of 5).

About half of the class time is devoted to lectures and class discussions on the biology and mathe-

matics contained in the research papers. The remaining half is spent with students working together in

interdisciplinary pairs. In these groups, students discuss the section of the research paper assigned for

that day, comparing questions and vocabulary. They also work on mathematical worksheets that explain

the computations used in the papers, such as finding eigenvectors or solving systems of first order linear

differential equations.

Our first research paper is \A Stage-Based Population Model for Loggerhead Sea Turtle and Implica-

tions for Conservation" by D. Crouse, L. Crowder, and H. Caswell. This paper uses a stage-based matrix

to describe the life-cycle of the loggerhead sea turtle. The biology topics include the complexities of con-

servation biology, the difficulty of obtaining reliable data, and the choices that must be made in the uses of

resources. The mathematical topics include the use of matrix models, determining eigenvectors and eigen-

values, geometric series, and the derivation of the formulas for calculating sensitivities and elasticities.

(Note: Sensitivities and elasticities are associated with the partial derivative of the dominant eigenvalue

with respect to the entries of the matrix.) Students work together through the details of the paper, critiquing

both the mathematics and the biology. While all mathematical calculations are initially done by hand, we

use MAPLE for the more complicated computations. The lab that accompanies this paper is an extensive

one that looks at the life cycle of flour beetles. We also do some work at the biology field station exploring

the life cycle of garlic mustard.

The second research paper is \Mathematical Analysis of HIV-I Dynamics in Vivo" by A. Perelson and

P. Nelson. This paper uses systems of primarily first order differential equations to study the dynamics

of an AIDS infection and the impact of drug therapies. The biology topics include the physiology of the

AIDS virus and its interactions with the immune system within a single host. The mathematical topics

include phase portraits, equilibrium solutions, finding solutions to systems of linear first order differential

equations using eigenvectors and eigenvalues, and basic probability. The accompanying molecular biology

lab allows students to study e-coli bacteria infected with the lambda phage. They use Polymerase Chain

Reaction (PCR) techniques to amplify the viral DNA and a spectrophotometer to quantify the rate of the

infection.

Grades are based on questions from the research papers, quizzes on both the mathematical and biological

concepts, lab reports, and oral presentations. Students do group oral presentations on the research papers

covered in class. These presentations are each 15-20 minutes, typically done in PowerPoint, and must



3.2 Mathematical Biology Taught to a Mixed Audience at the Sophomore Level 129

explain the connections between the biology and the mathematics. Students are required to find additional

sources to supplement the information found in the paper.

With the Crouse, et al., paper on Loggerhead Sea Turtles, each group was assigned a section of the

paper. The first group was responsible for background on sea turtle biology and age-classified population

projection models. They developed a life cycle diagram for the turtles, showed how to translate it into matrix

form, and discussed how to determine lambda, the stable age distribution and the reproductive value. Since

the data used in the Crouse paper was obtained from other sources, this group was responsible for finding

those sources (referenced in the Crouse paper) and explaining how the data was obtained and modified.

In particular, they had to highlight the assumptions that were inherent in the data. The second group was

responsible for explaining how to reformulate the age-classified model into a stage-classified model as

well as the meaning and derivation of the formulas involving sensitivities. This group supplemented the

paper by proving the formulas that we had stated (but not proved) in class. One of the references they

used was Matrix Population Models by Hal Caswell. The third group presented the results of the analysis
done in the paper and discussed the biological interpretation. They supplemented the paper by writing

MAPLE code to reproduce the analysis and using websites to research the current status of the loggerhead

sea turtles. Each group gave a 20-minute presentation, with an additional five minutes for questions. Each

student was required to ask at least one question and a small part of the grade reflected the presenter's

ability to answer these questions. Prof. Murray and I met at least once with each of the groups to critique

their talk and slides. This critique was crucial in improving the quality of the presentations.

A significant part of the grade is based on the final presentation of a self-selected research paper. This

must be a biology research paper that incorporates both data and a mathematical model. Examples of papers

used this year include population dynamics of cheetahs, predator-prey spatial dynamics exhibited by spider

mites, deforestation caused by the Mountain Pine beetle, and why drug therapies are not curing AIDS.

These presentations are assigned two to three weeks before the end of the semester and the remaining

classes are devoted to selecting a paper, working through the details, and creating the presentation. Each

presentation is 30 minutes and both biology and mathematics faculty are invited. The final project allows

us to assess the students' ability to read a biology research paper independently and to work through the

details of both the mathematics and the biology. Students find that the mathematical models carry hidden

assumptions that are ignored if one skips the mathematics. They also critique whether the mathematical

model used appears to be the most appropriate for the biological situation. We have been quite pleased

with the quality of the presentations.

3.2.3 Assessment and Results

We have now taught the mathematical biology course twice, once in spring 2002 and again in spring

2003. Both times we were able to have about 60% of the students from biology and about 40% from

mathematics. Students consistently rate the course highly. Students appreciate that the course focuses on

the interplay between the disciplines, uses research papers as the primary text, and uses oral presentations

rather than exams as the primary assessment. In response to the question \I am glad I took the course

because," student comments included:

It was good to be challenged.

I enjoyed working through research papers.

I learned a lot about the interactions between math and biology.

That I heard another discipline's point of view and learned how helpful math is.

It really helped me read research papers critically.
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My presentation skills improved, I learned how to read a paper and not gloss over the math and

interacted with students and prof from other disciplines that taught me a lot and were fun to work with.

It is what you look forward to in math. When what you know actually applies to real life.

Student responses to the question \I am most frustrated with the course because" focused on the

unevenness of the workload (primarily from the students who took the course in 2002), the difficulties

associated with the logistics of a team-taught course, and frustration that some biology research papers

are not necessarily using mathematical models appropriately (responding to papers used for the final

presentation).

With the support of the NSF grant, we were able to hire summer research students to help develop

materials and labs for the course. These students have always been one biology major and one mathematics

major and, where possible, students who have taken the course. Taking the course and doing research in the

summer has resulted in mathematics majors taking biology courses and pursuing careers in mathematical

biology. In fact, two of our mathematics majors started graduate work in mathematical biology in the fall

of 2003.

One of the most exciting and unanticipated outcomes from the course is the increased interaction

between the biology and mathematics departments at Hope College. In addition to collaborating on the

course, Dr. Murray and I have begun to collaborate on his research. The chair of the biology department,

Dr. Tom Bultman, recently submitted a biology research grant that included summer stipends for both a

mathematics student and a mathematics faculty member. Dr. Leah Chase, a neuroscientist at Hope College,

and I meet weekly to discuss ways to use mathematics in her research and she team-taught the mathematical

biology course with me in spring 2004. Collaborations on curriculum have spread to collaborations on

research which, in turn, have informed the collaborations on curriculum.

3.2.4 Implementation Issues

One of the most difficult issues in implementing such a course is finding a collaborator and convincing

the administration that a team-taught course is worthwhile. Finding a collaborator means getting to know

the faculty in the biology department and gravitating towards those that appreciate the use of mathematical

models. Ecologists are a natural place to start. Getting the administration to approve a team-taught course

is often more difficult. In our case, we are able to do this since the course has a three hour lecture and

a three hour lab. I get credit for the lecture and the biologist gets credit for the lab (which counts as a

course). This way, we each receive credit for one course. We chose to structure it, however, so that both

of us are always present for both the class and the lab.

Once a collaborator is found and a team-taught course has been approved, there remains the difficulty

of finding the students. We cross-list this course so that a student may receive either biology credit or

mathematics credit for the course. In both cases, it counts towards the major. If a mathematics student

chooses to take the course for biology credit, this will count towards the general education requirement of

taking a lab science. If a biology student chooses to take the course for math credit, it counts towards their

mathematics cognate requirement. We have found that having the course satisfy multiple requirements is

essential to attracting an audience. Secondly, I cannot overemphasize the importance of advertising the

course. This includes putting up flyers, sending e-mail, talking to advisors, and talking individually to

students. Most students are unaware of the growing opportunities for people able to work at the interface

of mathematics and biology. Most biology students are unaware of the increasing use of mathematics

in biological research. It takes time and effort to convince both audiences that a course in mathematical

biology is useful, especially since this includes convincing mathematics students to take a course that meets

six hours a week! However, there continues to be a subpopulation of mathematics majors who are looking
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for opportunities to apply mathematics as well as biology majors who recognize the unique benefits found

in taking such a course, particularly as preparation for graduate school. Our best recruiting device has

been the students who have taken the course or worked with us over the summer. Many students find the

focus of the course on learning how to critically read research papers, do effective oral presentations, and

communicate with those from a different disciplinary perspective to be appealing and a welcome change

from traditional course work.

3.2.5 Conclusion

I am convinced that training mathematics majors to apply mathematics to other disciplines is an important

skill that is often ignored or trivialized in traditional curricula. In particular, the benefits derived from

pairing mathematics majors with students from another discipline to solve non-trivial, real problems is

tremendous. Although the approach we have taken is to pair mathematics and biology, I believe this would

work equally well in pairing other disciplines such as mathematics and physics or chemistry or one of the

social sciences. However, there are some elements that I think are essential:

� Both groups of students (and faculty) must clearly understand that they cannot solve the problem
independently but rather that it requires expertise from both disciplines.

� Students (and faculty) must get beyond a fear of asking stupid questions. Both groups are novices and
both groups are experts.

� It is crucial that there be a hands-on component for both disciplines so that both groups gain an intuitive
understanding of what it means to work in another discipline.

� The fact that different disciplines define problems differently and apply different strategies to reach a
solution must be seen as an asset rather than as a barrier.

� Students (and faculty) must realize that interdisciplinary communication is difficult and takes time.
The differences in vocabulary and perspective make it very easy to talk to one another and yet not

communicate.

Creating this course, team-teaching with faculty from other departments, and collaborating with others

on research projects has been one of my most rewarding and exciting experiences. It has allowed me to

capitalize on a love of learning that I value in myself and try to foster in my students. It has been an

opportunity to integrate research and education for both the faculty and the students. And it has provided

our students with an example of the interdisciplinary team approach that closely resembles the environment

in which many mathematicians work in the real world.
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3.3
A Geometric Approach to

Voting Theory for Mathematics Majors

Tommy Ratliff

Wheaton College

3.3.1 Introduction

In the Spring of 2002, I taught an upper level course in Game and Voting Theory at Wheaton College, a

small liberal arts college, in Norton, Massachusetts. There were twelve students enrolled in the course. Most

were majors in Mathematics, Mathematics/Computer Science, or Mathematics/Economics, although there

was one History major and one Psychology major. All the students had taken our Discrete Mathematics

course, which serves as our introduction to proofs class. We spent the first half the semester on game

theory and the remaining seven weeks on voting theory. In this paper, I will focus on the voting theory part

of the course and give a brief tour through some of the course content. I also will describe the structure

of the assignments and directions that I would like to take the course in the future.

Approximately four years ago, I changed my research area to voting theory from algebraic topology,

in part because the questions and answers often are accessible to undergraduates, even if the proofs are

not. The course provided an opportunity to expose the students to an active area of research and to explain

recent results. For many students, this was the first time they had seen theorems from the last half of the

20th century, and it was certainly the first time any of the students had seen results published in the 21st

century. This made quite an impression on several of the students, who commented on this in their course

evaluations.

The students' primary context for understanding problems with voting came from the 2000 Presidential

election, where they identified dangling chads, the Electoral College, and the Supreme Court as the main

issues. Most of them had not realized that there can be problems in the underlying voting methods, even if

there is perfect information about the voters' preferences. The students were surprised to learn that when

there are more than two alternatives, the outcome can depend on the procedure used as much as on the

voters' preferences and they were pleasantly surprised that significant mathematical analysis can help in

understanding why these inconsistencies occur. For most of the students, this was also the first time they

had seen non-statistical mathematical methods applied outside of the sciences.

There are many materials that cover voting theory designed for lower level courses for non-majors,

but I wanted to give the students an introduction to the geometric framework that underlies some of the

very interesting recent results and is also the basis for my own research. Unfortunately, there is no text

133
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that addresses this material. The students used Don Saari's Chaotic Elections! A Mathematician Looks at
Voting [3] as a reference, and I used Hannu Nurmi's Voting Paradoxes and How to Deal with Them [1]
as an additional source. Not having a text was one of the weaknesses of the course, since the students did

not have a text to reference for their problem sets. In most courses, I like to emphasize that students read

the text before class so that they have some familiarity with the material beforehand, but this was not an

option in this course.

I chose to focus the course on paradoxes and inconsistencies that can happen and to emphasize that these

situations quite often occur not through any Machiavellian manipulation but rather happen inadvertently

when people do not understand the implications of the voting method. I also wanted the students to think

of voting in a larger context, not just elections for public office, but also votes by committees, a group

deciding where to eat dinner, or the selection of the figure skating medalists at the Winter Olympics. There

were two fundamental questions that came up repeatedly during the semester:

1. Given the specific preferences of all of the voters, which outcomes are possible by varying the voting

procedure?

2. Given a set of potential outcomes and corresponding voting procedures, is there a set of voters'

preferences that can give these outcomes using the corresponding procedure?

The students seemed genuinely surprised by how badly things could go. Toward the end of the semester,

one of the students came to ask about the way that her housemates for the coming year had determined who

would get the single bedrooms in the house. She said that after taking the course she felt that something

was significantly wrong with the method they had used. . . and she was correct. She told me that she would

have never suspected this before taking the course. This is one consequence I was hoping for: I wanted

the students to develop intuition about why paradoxes can occur with the intent of making them more

informed consumers of choice procedures in their daily life.

3.3.2 A Brief Survey of the Course Content

The majority of the course focused on elections involving three candidates. If the full semester were spent

on voting theory, then we would have gotten more deeply into elections with more candidates. Following

the standard approach, we assume that all voters have complete, strict, transitive preferences among all

possible outcomes. A listing of the voters' preferences is called a profile. I began the voting theory part
of the course with the following (very hypothetical) example.

Example 1 Wheaton just received a $50 million gift. A committee of students, faculty, staff, and admin-
istrators is formed to choose what to do. The three competing options are:

A - Build a new Science Center
B - Massively renovate first-year and sophomore dorms
C - Reduce the comprehensive fee substantially
There are 35 people on the committee, and their preferences are:

10 A > B > C 6 C > B > A

2 A > C > B 4 B > C > A

7 C > A > B 6 B > A > C

The fundamental question is: Given this profile, how do we aggregate the individuals' preferences to

find the group preference? In the course, there was a standard catalog of voting methods that we studied.
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1. Plurality: The voters indicate their top choice. In this case, the plurality outcome is C > A > B with

tallies 13 > 12 > 10. Notice that plurality corresponds to the voters giving 1 point to their top-ranked

candidate and 0 points to their second and third ranked. There are the normal variations where if no

candidate receives a majority, then a runoff is held between the top two candidates, or where the bottom

candidate is dropped (these variations are the same with three candidates).

2. Antiplurality: The voters give 1 point to their first and second ranked candidate and 0 points to their

third. Whereas plurality emphasizes a voter's strong approval (their top-ranked candidate), antiplurality

emphasizes their strong disapproval (their bottom-ranked candidate). In this example, the antiplurality

outcome is B > A > C with tallies 26 > 25 > 19.

3. Borda Count: The voters give 2 points to their top-ranked candidate, 1 point to their second-ranked

candidate, and 0 points to their last ranked candidate. The outcome for this example is A > B > C

with tallies 37 > 36 > 32.

4. Other Positional Methods: Plurality, antiplurality, and the Borda count are specific instances of

positional voting methods where weights w 1 W w2 W w3 are assigned to a voter's first place, second

place, and third place candidates, respectively. Plurality has weights 1 W 0 W 0, antiplurality has weights

1 W 1 W 0, and the Borda count has weights 2 W 1 W 0.

If we used weights 4 W 1 W 0, then the outcome is A > C > B with tallies 61 > 58 > 56. The

important point to notice is that by using four different positional methods, we have obtained four

different rankings for the same election! Depending upon the procedure chosen, the committee could

reasonably pick any of the three alternatives.

5. Condorcet Criterion: If one candidate beats all the other candidates in head-to-head elections, then

this candidate is called the Condorcet winner. In our example, A is the Condorcet winner since it beats
B by a count of 19 > 16 and beats C by a count of 18 > 17. One of the fundamental problems in

voting theory is that the Condorcet winner may not always exist since there can be a cycle among the

candidates.

6. Dodgson's Method: This method was proposed by Charles Dodgson (aka Lewis Carroll) and attempts

to find the candidate that is closest to being the Condorcet winner if the Condorcet winner does not

exist. One of the peculiarities of Dodgson's Method is that there is a profile with five candidates where

A is the Dodgson winner, but if every voter brings three friends with exactly the same preference, then

B becomes the Dodgson winner. I gave the students this profile in a homework set and asked them

to calculate the Dodgson winner, and they found this quite remarkable. This example appeared in a

paper of mine in 2001 [2], although this general property of Dodgson's Method has been known for

some time.

7. Approval Voting: In approval voting, each voter indicates which candidates they approve of, and each

of these candidates receives 1 point. Some voters may vote for one candidate, while others may vote

for two. We assume that no voter will select no candidates or all three since this would be equivalent

to expressing no opinion. One approval voting scenario from our example is:

Vote for one Vote for two

10 A > B > C 5 5

2 A > C > B 1 1

7 C > A > B 6 1

6 C > B > A 6 0

4 B > C > A 1 3

6 B > A > C 6 0
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In this case, the approval voting outcome is C > B > A with tallies 17 > 15 > 13. This is yet another

ranking distinct from the four rankings we obtained from the positional methods. In fact, by modifying

which voters select one candidate and which voters select two, it is possible to obtain all thirteen of

the rankings on three candidates (including ties) from this profile using approval voting.

Example 1 was quite a disturbing scenario for the students; no voter changed their rankings, but

depending upon the voting method used, the outcome could differ dramatically. With the coverage of the

irregularities in Florida during the 2000 Presidential election, the students knew that an election could be

sensitive to including or excluding a small number of voters, and some were aware that the outcome can

depend upon the method used (e.g., Gore won the national popular vote but Bush won the electoral college).

However, they were all surprised at just how variable the outcome could be even with perfect information

about the voters' preferences. In order to understand why these procedures give different outcomes, we

used the representation triangle developed by Saari.

The Representation Triangle

For any method that tallies points for each candidate (e.g., any positional method or approval voting), we

can measure the proportion of support for each candidate and assign the proportions to a point in R
3. For

example, using the profile in Example 1, plurality defines the point
�

12
35

; 10
35

; 13
35

�
where the coordinates

indicate the support for A, B , and C , respectively. The points for the other methods are given in Table 3.3.1.

Method Tally Point in R
3

A B C

Plurality 12 10 13
�

12
35

; 10
35

; 13
35

�

Antiplurality 25 26 19
�

25
70

; 26
70

; 19
70

�

Borda count 37 36 32
�

37
105

; 36
105

; 32
105

�

Weights 4:1:0 61 56 58
�

61
175

; 56
175

; 58
175

�

Approval voting 13 15 17
�

13
45

; 15
45

; 17
45

�

Table 3.3.1. Tallies for Example 1

An important observation is that a point .a; b; c/ arising from any profile and any voting method will

satisfy

a C b C c D 1 and a; b; c � 0:

Thus, all of these points must lie on the portion of the plane a C b C c D 1 in the first octant, as shown

in Figure 3.3.1.

Notice that each vertex on the triangle corresponds to a unanimous plurality outcome. For example,

the point .1; 0; 0/ corresponds to the plurality outcome for a profile where every voter has A top ranked.

Therefore, the proximity of the point to the vertices indicates the ranking of the candidates as determined by

the procedure in use. If we take an orthogonal view of the representation triangle as shown in Figure 3.3.2,

we see that it is naturally broken into six regions, each of which defines a complete transitive ranking of

the candidates.
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Figure 3.3.1. The image of the profiles in R
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Figure 3.3.2. Regions in the representation triangle
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Figure 3.3.3. Procedure line for Example 1

Figure 3.3.3 shows the points corresponding to the four positional outcomes for Example 1. It may

be somewhat surprising that these points appear to be colinear. The key observation is that any position

method w1 W w2 W w3 can be normalized so that it is of the form 1 W s W 0 with 0 � s � 1 by first

subtracting w3 from all the weights and then dividing by w1 �w3. Therefore, the outcome for any position

method will lie on the line segment connecting the two extreme values for s. These extreme values are

defined by s D 0 (plurality) and s D 1 (antiplurality), and we call the line segment the procedure line for
the profile.

This observation allows us to easily identify all possible outcomes for a profile by using a positional
method. For example, there is no positional method that will give an outcome of B > C > A for

Example 1. There are several results that are now immediate:

� A given profile can have at most four strict outcomes using positional methods since this is the

maximum number of regions that a line segment can intersect.

� If plurality and antiplurality give the same ranking, then all positional methods give this same ranking
on the profile.

Once we have identified the plurality and antiplurality outcomes, all possible positional outcomes

for the profile are clear. There is some restriction on the coordinates for plurality and antiplurality. First

notice that the antiplurality tally for each candidate is at least as large as the plurality tally and that the
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denominator for the antiplurality point is twice the denominator for the plurality point. Thus, the maximum

proportion that a candidate can receive under antiplurality is 1
2
since every voter selects two candidates,

and the antiplurality proportion must be at least half of the plurality proportion. Therefore, if .p1; p2; p3/

is the plurality point in the representation triangle for a profile and .ap1; ap2; ap3/ is the antiplurality

point, then
1

2
pi � api � 1

2
for i D 1; 2; 3

This relationship is important when trying to create examples where the plurality point lies in one region

and the antiplurality point lies in another.

Decomposition of R
6

The use of the procedure line and representation triangle describes the extreme outcomes that can be

achieved by a given profile, but they do not really explain why different procedures give different outcomes

on the same profile. For this, we use a decomposition of profiles into fundamental subspaces that was

developed by Saari.

By picking a consistent ordering for the six rankings of the three candidates, we can easily identify a

profile with a point in R
6. For example, if we use the same ordering as in Figure 3.3.2, then Example 1

corresponds to the point .10; 2; 7; 6; 4; 6/. Now consider the six profiles shown in Table 3.3.2: BA and BB

are the Basic Profiles for A and B , respectively;RA and RB are the Reversal Profiles; C is the Condorcet
Profile; and K is the Kernel Profile.

K D .1; 1; 1; 1; 1; 1/ C D .1; �1; 1; �1; 1; �1/

BA D .1; 1; 0; �1; �1; 0/ RA D .1; 1; �2; 1; 1; �2/

BB D .0; �1; �1; 0; 1; 1/ RB D .�2; 1; 1; �2; 1; 1/

Table 3.3.2. Our basis vectors for R
6

These profiles identify natural symmetries that occur in the space of all profiles. One may object to

the negative number of voters in all but K. However, the Kernel profile has essentially no impact on any

voting method and allows us to add multiples of K to the other profiles to get a non-negative number of

voters. The fundamental properties of these profiles, which the interested reader can verify, are:

� These form a basis for R
6.

� K; RA; RB have no impact on pairwise outcomes or Borda count.

� All positional methods give the same outcome on BA and BB . In particular, BA boosts A's count

compared to B and C , and BB boosts B's count compared to A and C .

� C explains all differences between positional methods and pairwise outcomes.

� RA and RB explain all differences among the positional methods, including the Borda count, plurality,

and antiplurality. Depending on the specific weights of the method, RA will either boost or diminish

A compared to B and C , and RB will either boost or diminish B compared to A and C .

This basis allows us to generate profiles that exhibit conflicts. For example, if we want to create a

profile where the Borda count gives B > C > A, there is no Condorcet winner, and the outcome using

weights 5 W 2 W 0 is A > B > C , then we can use the basis profiles as our building blocks.

� Begin with �BA C BB to give the Borda outcome of B > C > A. None of the other profiles we add

will affect the Borda count.
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� Add a strong Condorcet term (5C will do) to give a cycle in the pairwise votes of A > B , B > C ,

C > A. The reversal terms we add next will not affect the Borda count or pairwise elections.

� In order to boost A over B and C to get the A > B > C outcome using the weights 5 W 2 W 0, a

reversal term of 11RA is sufficient.

� This gives a profile which, unfortunately, has a negative number of voters. By adding 26K, we wind

up with the profile �BA C BB C 5C C 11RA C 26K, or

41 A > B > C 33 C > B > A

30 A > C > B 44 B > C > A

8 C > A > B 0 B > A > C

which we can verify has the desired properties.

We can also use the basis to explain why a given profile has different outcomes for different procedures.

For example, the profile from Example 1 has decomposition

5

6
BA C 2

3
BB C 7

6
C � 7

6
RA � 5

3
RB C 35

6
K:

The 5
6
BA C 2

3
BB component explains why the Borda count is A > B > C ; the 7

6
C term is not strong

enough to prevent A from being the Condorcet winner; and the �7
6
RA � 5

3
RB term introduces the conflict

with the Borda count, plurality, antiplurality, and the weighted system 4 W 1 W 0.

Sample Problems

These are some of the problems I assigned on homework and take-home exams that are related to the

procedure line and the decomposition of R
6.

1. Create examples of profiles with three candidates that have the following properties or explain why

no such profile exists. If the profile exists for each outcome, give the weights for a procedure that

determines that outcome.

(a) All positional methods give the ranking of A > B > C .

(b) By varying the positional procedure, the profile gives precisely the following strict positional

outcomes:

A > B > C A > C > B C > A > B

(c) Repeat part (b) but with outcomes

C > B > A B > C > A B > A > C A > B > C

(d) Repeat part (b) but with outcomes

C > A > B C > B > A B > A > C

(e) The only possible outcomes using a positional procedure are

B � C > A B > C > A B > A � C

where B � C indicates a tie between B and C .

(f) There are (at least) five different strict transitive outcomes that can be obtained by using five

different voting methods.

2. Let q0 denote the plurality point in the representation triangle for a profile and q1 denote the antiplurality

point. In each case, create a profile with these outcomes or explain why it is impossible.
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(a) q0 D .1
4
; 5

12
; 1

3
/ q1 D .3

8
; 1

4
; 3

8
/

(b) q0 D . 1
32

; 2
3
; 31

96
/ q1 D .1

5
; 8

15
; 4

15
/

(c) q0 D .1
3
; 1

5
; 7

15
/ q1 D . 3

10
; 1

3
; 11

30
/

(d) q0 D . 3
22

; 5
22

; 7
11

/ q1 D .3
7
; 3

7
; 1

7
/

3. For each profile that you determined was possible in problem 2, give all possible outcomes for this pro-

file (including ties) using a positional method. In each case, give the positional method that determines

the outcome.

4. For each profile that you determined was possible in problem 2, give all possible outcomes for this pro-

file (including ties) using approval voting. In each case, give an approval voting ballot that determines

the outcome.

5. Create examples of profiles with three candidates that have the following properties or explain why no

such profile exists.

(a) The only strict positional outcomes are A > C > B and B > C > A.

(b) The plurality outcome is A > B > C , the antiplurality outcome is C > A > B , and the Borda

count gives B > C > A.

(c) The Borda count is A > B > C , the pairwise outcome is B > A > C , and the plurality outcome

is C > A > B

(d) There is no Condorcet winner, the outcome using weights .5; 2; 0/ is A > B > C and the Borda

count outcome is B > C > A.

(e) The plurality outcome is B > A > C , the Borda count gives C > A > B and A is the Condorcet

winner.

Other Topics

There were several other topics in voting theory that we also touched on during the semester.

1. There is a natural linear transformation R
6 ! R

3 from the space of profiles on three candidates to

a space of pairwise outcomes. The key point is that each of the eight octants in R
3 corresponds to a

ranking of the three candidates: six correspond to the transitive rankings, one corresponds to the cycle

A > B , B > C , C > A, and the other to the reverse cycle A > C , C > B , B > A. Using this

framework, the students were able to show that the Condorcet winner can never be ranked last by the

Borda count.

2. The No-Show paradox shows that it can be advantageous for a large number of voters to choose not

to participate. Specifically, there exists a profile with 100 voters where A is the winner under plurality

with runoff, but if 47 voters with preference B > C > A abstain, then C becomes the winner. In other

words, 47% of the voters have motivation to not vote so that their second place candidate is elected

rather than their last place candidate.

3. We briefly discussed strategic voting and manipulation where a voter may improve the outcome of the

election from their perspective by misrepresenting their true preferences. For example, if A narrowly

beats B by one point using the Borda count, then a voter with preference B > A > C > D could

make B the Borda count winner by using the strategic vote of B > C > D > A. By moving A down

in their ranking, the voter has reduced A's tally by two points. The celebrated Gibbard Satterthwaite

Theorem shows that every non-dictatorial voting procedure is subject to manipulation.

4. Arrow's Theorem is perhaps the best known result in voting theory. It shows that the only procedure

that satisfies a particular set of fairness criteria is a dictatorship. There is some argument, however,

about whether the criteria are too restrictive and do, in fact, force the extremely negative result.
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3.3.3 Assignments and Future Plans

During the voting theory part of the semester, the students had an individual homework set, a group

homework set, a take-home exam, a book review, a group presentation, and a comprehensive take-home

final exam that was handed out during the last week of classes. Ideally, I would have preferred more

homework assignments, but generating all of the homework and exam questions took longer than I had

hoped.

An interesting consequence of the homework assignments was that the final grades were much higher

than in other upper-level courses I have taught. I believe that this was a result of the nature of the assign-

ments: the students knew when their profiles met the desired criteria. Their answers did not necessarily

come quickly (on the course evaluations, ten out of twelve students indicated that they spent more time on

this course than on their other courses), but they were able to verify that their answers were correct. This

was a quite different experience from my Real Analysis class the previous semester where the students

were not so certain about their �-ı proofs.

There were two pieces of software that helped the students with some of the routine calculations for

three candidate profiles on the homework and take-home exams . I wrote a Maple worksheet to draw the

procedure line for a given profile, as in Figure 3.3.3. The students found this quite useful since identifying

the regions touched by the procedure line is very sensitive to plotting the plurality and antiplurality points

accurately. In addition, the students in a computer science course wrote a Java applet to calculate the

plurality, Borda, and pairwise outcomes for any three candidate profile.

For the group presentations, the students worked in groups of two or three. They picked topics,

researched them on their own, and gave 15 minute presentations to the class. Most of the groups picked a

specific voting method that is currently in use and showed how different results could be obtained either

by slightly modifying the method or through strategic voting. Some of the topics were the proportional

representation system used in municipal elections in Cambridge, Massachusetts, the method (and proposed

reforms) used in judging Olympic figure skating, and the 1999 American League MVP ballot (where the

students, who were all Boston Red Sox fans, showed how Pedro Martinez could have won). Since the

students had already given presentations earlier in the semester during the game theory part of the course,

the presentations on voting theory went fairly well.

My motivation for the book reviews was that there are many very interesting books about mathematics

and mathematicians (as opposed to textbooks) that our students never read because the books do not fit into

a specific place in the curriculum. I viewed this assignment as part of the students' general mathematical

education, so I did not stress that the book need be related to the content of the course. Some of the

books read by the students were The Man Who Knew Infinity, The Code Book, The Man Who Loved Only
Numbers, Flatterland, and A Beautiful Mind. I emphasized to the students that their paper should be a
critique of the book and not simply a summary. In particular, they should address the mathematical content

and the writing style as well as the overall organization of the book. Most of the papers were between five

and eight pages and the students enjoyed doing the reviews. I was very happy with the assignment, and

I have continued to give it in my other upper division courses. The book review and group presentations

combined to count for a total of 20% of each student's final grade in the course.

In Fall 2003, I expanded the voting theory portion into a full semester sophomore-junior level course.

This allows more time to delve into manipulation and profiles with more than three candidates and to

cover additional topics such as power indices (which measure the power of voters within a voting system),

proportional representation systems, and questions of apportionment. As part of our new general education

curriculum at Wheaton, this course will be connected with a course from political science on Congress and

the Legislative Process. The political science professor and I will give guest lectures in each other's course,

and we are planning a joint project for the students from both classes, although we have not yet worked
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out the exact format for this. The major challenge in planning the course is the lack of an appropriate text.

I currently am developing a larger catalog of examples so that I can distribute solutions to the students. I

also have expanded the Java applets to handle profiles with more candidates and add extra features, such

as giving the decomposition of a profile in terms of the basis vectors.

3.3.4 Conclusions

Overall, I was fairly pleased with the voting theory portion in the course, especially for the first time

teaching this material. One part of the take-home final asked the students to write a four-page essay where

they explained the big picture of the course in their own words. From these essays, I believe the course

succeeded in making them more skeptical about the process used by many groups to make decisions. For

me, it was very rewarding to share my area of research with undergraduates and I believe the students

benefited from seeing current research in an area that will almost certainly affect their daily lives.
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3.4.1 Introduction

It is our belief that students compartmentalize mathematical techniques to be used solely for a specific

problem or narrow set of problems. Ideally, students would develop a toolbox of mathematical techniques

to analyze any problem from a multitude of perspectives. Analyzing simple weighted-voting games helps
students develop varied approaches to problem solving while demonstrating how to use different mathe-

matical skills in nontrivial, relevant ways. Such an analysis necessitates the integration of mathematical

topics, including combinatorics, geometry, and probability.

This article serves as a primer for instructors so that they may introduce simple weighted-voting games

and the Shapley-Shubik power index in order to relate voting theory to various topics in the curriculum. To

encourage implementation and adaptation of this material, we include many examples and exercises. For

this reason, this article may be used for self study by independent study students. These materials have been

developed in a handful of courses at Montclair State University from spring 1999 to the present, including

a general education requirement course, an upper level applied combinatorics and graph theory course,

a graduate level course in combinatorial mathematics, and two independent study courses. One student

has used this article as a self-study guide as a precursor to computational voting theory. These different

levels of use are a testament to the diversity of mathematics that can be used to analyze simple weighted-

voting games through the Shapley-Shubik power index. In this paper, we provide specific guidelines and

suggestions on how to use the material developed in this article for different courses.

Simple weighted-voting games require only basic notions of sets, addition, and inequalities. The

Shapley-Shubik power index is defined in terms of permutations of voters. Although both ideas are easy

to understand, simple weighted-voting games and their Shapley-Shubik power indices can be rigorously

analyzed to lead to interesting mathematics. The following is a sample of the types of mathematics and

skills that are needed to analyze simple weighted-voting games and their Shapley-Shubik power indices.

This list also provides a rough outline of the order that these topics appear in this paper. The analysis

of Shapley-Shubik power indices of discrete, simple weighted-voting games requires concrete ideas about

143
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domain and range, applications of logic, properties of symmetry, permutations, and the addition of real

numbers. It also requires the calculation of the number of nonnegative integer solutions of equations and

the solution of equations with inequality constraints. The analysis of continuous, simple weighted-voting

games also uses equivalence relations and partitions, the geometric relationship between inequalities and

half-planes. It uses the area of a region to determine the likelihood that certain outcomes occur. Properties

of discrete and continuous games are connected by limits of combinatorial identities that converge to areas

of partitions.

We are not the first to suggest using simple weighted-voting games in the undergraduate curriculum.

There are some exemplary materials that introduce simple weighted-voting games and the Shapley-Shubik

power index in the context of modeling political interactions (Lampert [12] and Straffin [18],[19] ), suitable

for discrete mathematics and modeling courses. For this reason, we do not stress the modeling component in

this work, although it is a part of our class presentation of this material. We believe that our approach asks

more mathematical questions, especially geometric questions, of the students, while retaining its relevance

to political science and modeling. There are other geometric approaches to mathematical political science

that are accessible to undergraduate students, including those by Saari [15],[16]. These texts do not focus

on simple weighted-voting games, but on election procedures.

One benefit of introducing this material to students is that they can read research on the evolution and

formation of political institutions. In particular, there have been accessible analyses of the power indices

of simple weighted-voting games modeling the European Economic Community (Brams and Affuso [2]),

the European Union (Hosli [11], Berg [1], and Nurmi and Meskanen [14]), the International Monetary

Fund (Dreyer and Schotter [5]), and the United States' Electoral College (Mann and Shapley [13]). At the

heart of these articles are mathematical phenomena related to the institution at hand.

3.4.2 Simple Weighted-Voting Games and the Shapley-Shubik Power Index

Stockholders of a company are often allowed to vote \for" or \against" a potential company policy at a

shareholders' meeting. Committee members often vote \yes" or \no" to arrive at a joint decision. Jurors

vote \guilty" or \not guilty." All of these situations can be modeled by simple weighted-voting games. In

the case of jurors, their votes are treated the same way. However, at a shareholders' meeting, someone who

owns more shares of stock of the company has her vote count more; indeed, the vote counts for as many

shares of stock as the stockholder has. Simple weighted-voting games can model these diverse situations,

where voters' votes may be weighted differently. However, simple weighted-voting games model only those

elections where two outcomes are possible: \yes" and \no." A measure is passed if enough voters vote

\yes."

Definition 1: A simple weighted-voting game is a set of n voters fv1; v2; : : : ; vng, where voter i 's vote

carries the weight wi , and a quota, a value that if the sum of the yes voters' weights is greater than or

equal to the quota q then a measure passes. Denote a simple weighted-voting game by ŒqI w1; w2; : : : ; wn�.

Typically, simple weighted-voting games are restricted by the following properties:wi is a nonnegative

integer for every i and q >

Pn
iD1 wi

2
. When the weights are restricted to nonnegative integer values, then

we will call these discrete simple weighted-voting games. Consider the motivational examples of a jury,
a committee, or the shareholders of a company. Every member of a jury must vote guilty for a defendant

in a criminal trial to be found guilty. If any of the 12 members of the jury vote not guilty,then the jury

is a hung jury and no decision is reached. (If the jurors do not all agree on guilty or not guilty,then the

defendant of a trial may be re-tried.) Since a juror's vote is indistinguishable from another juror's vote,

this jury can be modeled by the following simple weighted-voting game: Œ12I 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1�.
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Notice that all voters' votes have the same weight.

There is not a unique simple weighted-voting game to model the jury's voting process. Indeed,

Œ78I 12; 11; 10; 9; 8; 7; 6; 5; 4; 3; 2; 1� also represents the trial by jury because all of the voters must agree

in the affirmative to return a guilty charge and the sum of the weights of the voters is the quota, q D 78.

Although all of the jurors' votes are weighted differently, it is clear that they must vote unanimously to

arrive at a guilty verdict, as before.

Consider a committee with a chairperson and three other members where in order for the committee to

pass a measure, the chairperson and at least two of the other members must vote yes. This can be represented

by the simple weighted-voting game Œ4I 2; 1; 1; 1�, where the vote of the chairperson has weight 2. Notice

that a measure can be passed only if the quota of 4 is reached. This only can be met by having the

chairperson and two other members of the committee vote yes(since 2 C 1 C 1 � 4) or by having the

chairperson and all three other members vote yes(since 2 C 1 C 1 C 1 > 4). The simple weighted-voting

game Œ7I 3; 2; 2; 2� also models the relationship between the committee members' votes. In both games, a

measure can only be passed if v1 votes yes.

Suppose that a company has three stockholders and that each share of stock grants the owner of the

stock one vote. Assume that the three stockholders own 55, 30, and 15 shares and that a measure is passed

if a majority of the votes are in favor of the measure. This can be represented by the simple weighted-voting

game: Œ51I 55; 30; 15�: Although the numbers in this simple weighted-voting game seem natural, realize

that Œ501I 550; 300; 150� also models the voting relationship between the shareholders. A measure passes

if v1 votes yes and fails to pass if v1 votes no.

Exercise 1: A Hiring Committee consists of a Personnel Director, a Team Manager, and three team

members. The committee agrees to hire an applicant if, at the minimum, the director and all three team

members or the director, team manager, and two team members agree to hire the applicant. Construct a

simple weighted-voting game to model this situation.

Exercise 2: The quota of a simple weighted-voting game is required to be greater than half of the sum

of the weights of all of the voters. To see why this is the case, consider the simple weighted-voting game

Œ50I 50; 30; 20� and the measure \Voter 1 is the supreme ruler of the world." Does this measure pass? What

about the measure \Voter 1 is not the supreme ruler of the world?" Does this measure pass? Explain why

it is necessary to restrict the value of the quota.

Exercise 3: Suppose that the stock of a company splits. That is, assume that every share of stock is now

worth 2 shares of stock. To preserve the relationship between the shareholders, what must be done to the

quota? Explain.

Simple weighted-voting games provide a mathematical means to model political interactions. However,

the mathematical framework presents opportunities not only to model but formally to ask, and to answer,

questions inspired by the political setting. The most pertinent question is: \Who has political power?" From

the examples, it is clear that a voter is better off having his vote carry a larger weight. But how is this

related to political power? Power indices use the simple weighted-voting game structure along with insight

about how political processes work to quantify the political power of players in a simple weighted-voting

game. Before introducing the ideas needed to define the Shapley-Shubik power index, we present some

terminology that represents extreme cases of the relationships between the voters. In fact, these terms are

represented by the examples above.

Definition 2: A voter in a simple weighted-voting game

� is a dictator if she can pass a measure by voting Yes, even if all other voters vote No,
� has veto power if she can defeat a measure by voting against it, even when all other voters support

the measure, and
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� is a dummy voter if the outcome of an election never depends on her vote.

Notice that the chairperson in the committee example has veto power while the first voter in the

stockholder example is a dictator. Furthermore, the other voters in the stockholder example are dummy

voters. The jury example demonstrates that more than one voter, indeed all voters, may have veto power.

Power indices provide a way to determine which simple weighted-voting games model the same situations.

For applications of modeling real world situations with simple weighted-voting games, see COMAP [4].

The Shapley-Shubik power index focuses on the order of yes votes and who casts the deciding, or

pivotal, vote. The pivotal voter has the power for this sequence of votes. The Shapley-Shubik power index

of a voter is the number of times that a voter is pivotal over all possible sequences, or permutations, of

the order of voters.

Consider the simple weighted-voting game Œ3I 2; 1; 1�. For the permutation, v1 v2 v3, the second voter

is the pivotal voter since w1 < q and w1 C w2 � q. A convenient method to compute the Shapley-Shubik

power index is to list all of the permutations of the voters and to circle the pivotal voter for each ordering.

All permutations of the three voters are listed in Figure 3.4.1 and the pivotal voters of the game Œ3I 2; 1; 1�

are indicated. Merely counting the number of times that each voter is circled yields the Shapley-Shubik

power index. For Œ3I 2; 1; 1�, the Shapley-Shubik power index is 4:1:1.

Figure 3.4.1.

Exercise 4: The Three Stooges meet regularly to discuss career options. Since Moe is the most recog-

nizable and, in some sense, most essential Stooge, he has veto power on all business decisions. However,

Moe is not a dictator. For Moe to pass a measure, either Larry or Curly has to vote \yes" also. Represent
this situation with a simple weighted-voting game.

Exercise 5: Define equivalent simple weighted-voting games to be games where the voters have the

same Shapley-Shubik power index. Find two such 3-voter games.

Exercise 6: For the simple weighted-voting game, ŒqI w1; : : : ; wn�, explain why the following is true: If

the Shapley-Shubik power index of voter i is greater than the Shapley-Shubik power index of voter j ,

then wi > wj .

Exercise 7: For the simple weighted-voting game, ŒqI w1; : : : ; wn�, explain why the following is false:

If wi > wj , then the Shapley-Shubik power index of voter i is greater than the Shapley-Shubik power

index of voter j .

Exercise 8: Prove that a voter is a dictator in an n-player simple weighted-voting game if and only if

his Shapley-Shubik power index is nŠ.

Exercise 9: Prove that a voter is a dummy voter if and only if her Shapley-Shubik power index is zero.
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3.4.3 Possible Shapley-Shubik Indices

The Shapley-Shubik power index can be described by a function that takes a simple weighted-voting game

with n voters to an n-tuple with nonnegative integer terms that sum to nŠ. More rigorously, the Shapley-

Shubik power index can be defined by the value function on coalitions, although this introduces ideas that

are not germane to this development (see e.g., Shapley and Shubik [17] for deriving the Shapley-Shubik
power index from the Shapley value, commonly used in game theory.) From our examples, we know

that the Shapley-Shubik power index also depends on the quota. Rather than describe the Shapley-Shubik

power index by a function with domain of n-tuples of weights together with a quota, we define separate

functions for the total weight (i.e., the sum of all voters' weights) and the quota.

Definition 3: A Shapley-Shubik power index is an image point of a function from the set of simple

weighted-voting games with total weight w and quota q into the set of nonnegative integer solutions of

s1 C s2 C � � � C sn D nŠ:

More mathematically, the Shapley-Shubik power index is given by Sq;w where Sq;w W D ! R with

domain

D D f.w1; w2; : : : ; wn/ j wi � 0 and wi 2 Z; for all i; and

nX

iD1

wi D wg

and range

R D f.s1; s2; : : : ; sn/ j si � 0 and si 2 Z; for all i; and

nX

iD1

si D nŠg:

The definition and functional notation of the Shapley-Shubik power index naturally leads to purely

mathematical questions that will also have implications on applications. First and foremost, we may want

to know if, for fixed w and q, the Shapley-Shubik power index is a one-to-one and/or onto function.

Realize that for a 3-voter simple weighted voting game the Shapley-Shubik power index maps into the set

of nonnegative integer solutions of s1 C s2 C s3 D 6; there are
�

8
2

�
D 28 possible image points. Which of

these possible image points are in the range (for some w and q)?

Exercise 10: Determine the 28 possible image points for the Shapley-Shubik power index for 3-voter,
simple weighted-voting games. Use a combinatorial argument to explain why there are 28 possible image

points.

Exercise 11: Use a combinatorial argument to count how many possible image points there are for the

Shapley-Shubik power index function when there are n voters.

Exercise 12: Prove that if m:n:p is a Shapley-Shubik power index for a simple weighted-voting game,

then all permutations of m, n, and p are possible power indices, too.

Exercise 13: Explain why a voter is a dictator if she is ever pivotal in a permutation where she appears

in the first position.

The following examples display the type of analysis necessary to determine the range of the Shapley-

Shubik power index.

Example 1: 3:2:1 is not a possible Shapley-Shubik power index.

Consider the orderings of the voters in Figure 3.4.1. Since voter 1 is not a dictator, then he cannot be

the pivotal voter in the sequences v1 v2 v3 and v1 v3 v2 (see Exercise 3). Hence, voter 1 must be pivotal

in three of the four orderings:

v2 v1 v3 v2 v3 v1 v3 v1 v2 v3 v2 v1:
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More specifically, voter 1 must be pivotal in v2 v3 v1 or v3 v2 v1. Voter 1 being pivotal in either

sequence implies that w2 C w3 < q. So, voter 1 must be pivotal in both of these orderings. Therefore,

voter 1 must be pivotal in one of v2 v1 v3 and v3 v1 v2. By Exercise 2, it follows that w1 > w2 > w3

and w2 C w1 > w1 C w3. Voter 1 must be pivotal in the ordering v2 v1 v3.

Voter 2's power index is two. Hence, voter 2 must be pivotal in two of the three orderings:

v1 v2 v3 v1 v3 v2 v3 v1 v2:

One of these must be v1 v2 v3. This follows since voter 1 is pivotal in v2 v1 v3, indicating that

w2 Cw1 � q. However, if voter 2 is pivotal in either v1 v3 v2 or v3 v1 v2, then voter 2 must be pivotal in

both. Hence, a contradiction on voter 2's power index being 2. So, 3:2:1 is not a possible Shapley-Shubik

power index.

Example 2: 3:3:0 is a possible Shapley-Shubik power index.

Since voter 3 is a dummy voter, he can never influence the outcome of an election. Since neither

voter 1 nor voter 2 is a dictator, both voters must agree in the affirmative and vote \yes" for a measure

to pass. In the sequence of \yes" votes, which ever of voter 1 or voter 2 appears later in the sequence is

the pivotal voter. Both voter 1 and voter 2 are equally likely to appear later in the six orderings. Hence,

both are pivotal voters in three of the six orderings. The simple weighted-voting game Œ4I 2; 2; 1� has

Shapley-Shubik power index 3:3:0.

Exercise 14: Realize that 2:2:2 is a valid Shapley-Shubik power index for certain values of w and q:

However, the power index can be achieved by different relationships between the voters; one such way is

unanimity rule while the other is majority rule. Explain.

Exercise 15: Explain why 5:1:0 is not a valid Shapley-Shubik power index.

Exercise 16: Can you ever get 2:2:2 for a Shapley-Shubik power index when q D 2
3
w?

Exercise 17: Determine which of the 28 points are images of the Shapley-Shubik power index for some

3-voter, simple weighted-voting game.

The analysis used in the previous two examples can be extended to any number of voters, albeit with

some difficulty. However, thinking of which nonnegative integer solutions of s1 C s2 C � � � C sn D nŠ

are valid Shapley-Shubik power indices for any n is beneficial to solving the problem for n D 4: The

following theorem only uses properties of the addition of nonnegative integers and permutations.

Theorem 1: If ˛k is the pivotal voter of the permutation ˛ 1˛2 : : : ˛n of voters, then voter ˛k's power
index is at least .k � 1/Š.n � k/Š

Proof: Let w.˛k/ be the weight of voter ˛k . Assume that k satisfies 1 < k < n. The permutation

can be written as ˛1˛2 : : : ˛k�1˛k˛kC1 : : : ˛n. Because ˛k is the pivotal voter,
Pk�1

iD1 w.˛i / < q andPk
iD1 w.˛i / � q. It follows that ˛k is the pivotal voter for the permutation of voters 1̌ˇ2 : : : ˇk�1˛k
kC1

: : : 
n, where ˇ D ˇ1 : : : ˇk�1 is a permutation of f˛1; : : : ; ˛k�1g and 
 D 
kC1 : : : 
n is a permutation

of f˛kC1; : : : ; ˛ng. There are .k �1/Š permutations ˇ and .n�k/Š permutations 
 . Hence, ˛k is the pivotal

voter in at least .k � 1/Š.n � k/Š permutations.

If k D 1, then ˛1 is the pivotal voter in ˛1˛2 : : : ˛n. It follows that w.˛1/ � q and that ˛1 is a

dictator. This implies that ˛1 is the pivotal voter for all nŠ permutations of the n voters. And, for k D 1,

nŠ > .k � 1/Š.n � k/Š is in agreement with the theorem.

For k D n, the voter ˛n is pivotal only when he appears at the end of the sequence of voters, or

equivalently, at the end of the permutation. This occurs .n � 1/Š times which is equal to .k � 1/Š.n � k/Š

for k D n.

This theorem can be applied to eliminate certain potential image points of the Shapley-Shubik power

indices.
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Corollary 1: For n voters, a non-dummy voter's Shapley-Shubik power index is at least
.dn

2
e � 1/Š.n � dn

2
e/Š where d�e represents the ceiling function.

Corollary 2 : For n � 4 voters, no voter has an odd power index.

Proof: By Theorem 1 , a non-dummy, non-dictator voter's power index is the sum of terms .k�1/Š.n�k/Š.

For n � 4, .k � 1/Š.n � k/Š is even. And, the sum of even numbers is even. And, dictators and dummies

always have even power indices.

Exercise 18: Describe which possible Shapley-Shubik image points are eliminated by the corollaries for

n D 4?

3.4.4 Discrete Approach to Probabilistic Questions

Re-examine Figure 3.4.1, where the Shapley-Shubik power index is determined for Œ3I 2; 1; 1�. The in-

equalities present in the figure determine which voter is pivotal for a particular sequence of voters. The

set of all inequalities defines the Shapley-Shubik power index. Indeed, any simple weighted-voting game

ŒqI w1; w2; w3� with w1 C w2 C w3 D w satisfying

w1 < q w2 < q w3 < q

w1 C w2 � q w1 C w3 � q w2 C w3 < q

w1 C w2 C w3 � q

will have the same Shapley-Shubik power index, 4 W 1 W 1, as Œ3I 2; 1; 1�.

Definition 4: For fixed w and q, two n-voter simple weighted-voting games are ss-equivalent if they
have the same Shapley-Shubik power index.

Exercise 19: Show that the set of all ss-equivalent, n-voter simple weighted-voting games form an

equivalence class.

It becomes a counting problem to determine how many simple weighted-voting games with fixed w

and q are in any equivalence class, as demonstrated by the following two examples.

Example 3: Determine the number of simple weighted-voting games of the form Œ14I w1; w2; w3� with

w D 20 in the equivalence class of 6 W 0 W 0.

Since voter 1 is a dictator, it follows that w1 � 14. The number of simple weighted-voting games

Œ14I w1; w2; w3� with w D 20 in the equivalence class of 6 W 0 W 0 is the number of nonnegative integer

solutions of w1 C w2 C w3 D 20 where w1 � 14: Equivalently, it is
P20

w1D14 jSw1
j where Sw1

is the set

of nonnegative integer solutions to w2 C w3 D 20 � w1: Using a simple counting argument, it follows

that jSw1
j D

�
20�w1C1

1

�
D 20 � w1 C 1 D 21 � w1: Hence, the number of simple weighted-voting games

Œ14I w1; w2; w3� with w D 20 in the equivalence class of 6 W 0 W 0 is

20X

w1D14

jSw1
j D

20X

w1D14

21 � w1 D 7 � 21 �
20X

w1D1

w1 C
13X

w1D1

w1 D 147 � 210 C 91 D 28:

The next example demonstrates the counting problem for the set of inequalities from Figure 3.4.1.

Example 4: Determine the number of simple weighted-voting games of the form Œ14I w1; w2; w3� with

w D 20 in the equivalence class of 4 W 1 W 1.
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Determining the number of simple weighted-voting games in the equivalence class is equivalent to

determining the number of nonnegative integer solutions that satisfy w1 Cw2 Cw3 D 20 and the following

inequalities

w1 < 14 w2 < 14 w3 < 14

w1 C w2 � 14 w1 C w3 � 14 w2 C w3 < 14:

Since w1 C w2 C w3 D 20, the inequalities w1 C w2 � 14, w1 C w3 � 14, and w2 C w3 < 14 can be

rewritten as 6 � w3, 6 � w2, and 6 < w1, respectively. But, 6 � w3 and 6 � w2 imply that w1 � 8.

Hence, we are counting the number of nonnegative integer solutions of w1 C w2 C w3 D 20 such that

8 � w1 � 13; w2 � 6, and w3 � 6.

Let w�

1 D w1 � 8; w�

2 D w2, and w�

3 D w3: The system transforms to w�

1 C w�

2 C w�

3 D 12 such that

0 � w�
1 � 5; 0 � w�

2 � 6, and 0 � w�
3 � 6: Determining the number of integer solutions to the equality

satisfying the inequality constraints can be achieved through a use of the Inclusion-Exclusion Principle

(e.g., see Brualdi [3]). Let S be the set of nonnegative integer solutions of w�

1 C w�

2 C w�

3 D 12. Further,

let P1 be the property that w�

1 > 5 and let Pi be the property that w�

i
> 6, for i D 2 and 3. Define the

set Ai D f.w�

1 ; w�

2 ; w�

3 / W .w�

1 ; w�

2 ; w�

3/ 2 S and .w�

1 ; w�

2 ; w�

3 / has property Pi g: Then, the number of
nonnegative integer solutions of w�

1 C w�

2 C w�

3 D 12 such that w�

1 � 5, w�

2 � 6, and w�

3 � 6 is, by the

Inclusion-Exclusion Principle,

jA0

1 \ A0

2 \ A0

3j D jS j � jA1j � jA2j � jA3j C jA1 \ A2j C jA1 \ A3j C jA2 \ A3j � jA1 \ A2 \ A3j

where A0 is the complement of set A. This simplifies to
�

14
2

�
�

�
8
2

�
�

�
7
2

�
�

�
7
2

�
D 21. There are 21 simple

weighted-voting games with w D 20 and q D 14 ss-equivalent to 4 W 1 W 1.

Assume that there is a uniform distribution over all simple weighted-voting games with w and q fixed.

That is, all simple weighted-voting games

ŒqI w1; w2; : : : ; wn� such that w1 C w2 C � � � C wn D w are equally likely to occur.

Then the size of the equivalence class of the simple weighted-voting games for a Shapley-Shubik

power index naturally corresponds to the likelihood of picking a simple weighted-voting game at random

which has that particular Shapley-Shubik power index. Consider the following extension of the previous

example.

Example 5: Determine the likelihood of a simple weighted-voting game having Shapley-Shubik power

index 4 W 1 W 1 for w D 20 and q D 14.

There are
�
22
2

�
D 231 simple weighted-voting games Œ14I w1; w2; w3� with w1 C w2 C w3 D w D 20

that have Shapley-Shubik power index of 4 W 1 W 1; this is the same number of nonnegative integer solutions

of w1 C w2 C w3 D w D 20. If all of these games are equally likely to occur, then the probability of

selecting any one at random is 1
231
. Hence, the probability of a simple weighted-voting game with w D 20

and q D 14 having Shapley-Shubik power index is 21
231

D 1
11
, since there are 21 simple weighted-voting

games with w D 20 and q D 14 with Shapley-Shubik power index 4 W 1 W 1.

The idea of considering the probabilities in which certain Shapley-Shubik power indices occur is a

natural extension of the counting problem. Consider the possibility that there are a fixed number of shares

of stock of a company, but that shareholders may sell their stock to other shareholders. We assume that

all arrangements are equally possible. There are examples and exercises in COMAP [4] that consider how

many shares could be sold without changing the power index of the game.

Exercise 20: Determine how many 3-voter, simple weighted-voting games with w D 20 and q D 14 are

ss-equivalent to 3 W 3 W 0.
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Exercise 21: Find a representative simple weighted-voting game with 4 voters that has Shapley-Shubik

power index 6 W 6 W 6 W 6 for w D 20 and q D 11. Compare this to a representative 4-voter game that has

Shapley-Shubik power index 6 W 6 W 6 W 6 for w D 20 and q D 18. Discuss the relationships between the

pivotal voters in the two games.

3.4.5 Geometrical Interpretation of the Shapley-Shubik Power

A simple weighted-voting game ŒqI w1; w2; : : : ; wn� can be normalized by dividing the quota and players'

weights by w D w1 C w2 C � � � C wn. The players' weights of the normalized game

h q

w
I w1

w
;
w2

w
; : : : ;

wn

w

i

can be considered geometrically as a point on the .n � 1/-simplex, denoted Sn�1; the .n � 1/-simplex is

the set of nonnegative solutions to

x1 C x2 C � � � C xn D 1:

Since any n � 1 values of xi 's define a point on the simplex, the simplex has dimension n � 1. For a game

with 3 players, the normalized weights of the three players can be viewed as a point on the 2-simplex.

The 2-simplex is the intersection of the plane x1 C x2 C x3 D 1 and the positive octant where xi � 0 for

all i ; this forms a triangle as shown in Figure 3.4.2.

Figure 3.4.2.

Up to now, we have restricted our attention to discrete simple weighted-voting games where the weights

were nonnegative integer values. In this section, we allow weights to be nonnegative real numbers; we

call these continuous simple weighted-voting games. For the quota being a fixed percentage of the sum
weight of all voters, a point on Sn�1 represents an equivalence class of simple weighted-voting games

for n players. This follows because many simple weighted-voting games have the same normalized rep-

resentation. The simple weighted-voting game ŒqI w1; w2; : : : ; wn� is normalized to
�

q
w

I w1

w
; w2

w
; : : : ; wn

w

�
.

The weights of the pre-normalized game can be viewed as the point .w1; w2; : : : ; wn/ in Rn. The normal-

ized weights are represented by the point
�

w1

w
; w2

w
; : : : ; wn

w

�
on the .n � 1/-simplex. Geometrically, these

two points are related since the line connecting the origin and .w1; w2; : : : ; wn/ intersects the .n � 1/-

simplex at
�

w1

w
; w2

w
; : : : ; wn

w

�
. Hence, the equivalence class of simple weighted-voting games represented

by
�

w1

w
; w2

w
; : : : ; wn

w

�
is every point on the ray from the origin through

�
w1

w
; w2

w
; : : : ; wn

w

�
.

The Shapley-Shubik power index of a simple weighted-voting game of n voters, s1 W s2 W � � � W sn;

also can be normalized. Specifically, the normalized power index s1

nŠ
W s2

nŠ
W � � � W sn

nŠ
is a point on the
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.n � 1/-simplex since
s1

nŠ
C s2

nŠ
C � � � C sn

nŠ
D 1

where
sj

nŠ
� 0 for all j . The 10 possible Shapley-Shubik power indices for 3-voter simple weighted-voting

games are 6:0:0, 0:6:0, 0:0:6, 4:1:1, 1:4:1, 1:1:4, 3:3:0, 3:0:3, 0:3:3, and 2:2:2 (this answers Exercise 8).

Normalized, these power indices are graphed on the 2-simplex in Figure 3.4.3; they are .1; 0; 0/; .0; 1; 0/,

.0; 0; 1/, .2
3
; 1

6
; 1

6
/, .1

6
; 2

3
; 1

6
/, .1

6
; 1

6
; 2

3
/, .1

2
; 1

2
; 0/, .1

2
; 0; 1

2
/, .0; 1

2
; 1

2
/, and .1

3
; 1

3
; 1

3
/.

Figure 3.4.3.

For the remainder of the paper we will assume that all weights, quotas, and Shapley-Shubik power

indices are normalized, unless otherwise indicated. Then the normalized quota is in
�

1
2
; 1

�
. The Shapley-

Shubik power index can be viewed as a map from Sn�1 to Sn�1,mapping a simple weighted-voting game

(with a specified normalized quota q) to a Shapley-Shubik power index. We will denote this map by

Pq . As discussed previously (e.g., in Figure 3.4.1), the Shapley-Shubik power index of a given game
ŒqI w1; w2; : : : ; wn� (assumed to be normalized) is determined by which sums of weights are greater than

or equal to the quota. The collection of inequalities partition Sn�1 into different regions where each point

in a region has the same Shapley-Shubik power index.

Each point in a specific partition has the same Shapley-Shubik power index; thus, every point in a

region has the same image under Pq: Graphing the boundaries of the regions, i.e., all combinations of
sums of weights equaling the quota, yields a geometric representation of the partitioning of the simplex

by the Shapley-Shubik power index map.

For n D 3, the partitioning equations of S2 are

w1 D q; w2 D q; w3 D q; w1 D 1 � q; w2 D 1 � q; and w3 D 1 � q:

Due to the symmetry, there are 4 regions up to permutation on the set of players; these regions are described

below. Summative data appears in Table 3.4.1 and the regions are pictured in Figure 3.4.4. Note that the

shape of the regions is dependent on the quota. For the below descriptions, assume that the normalized

quota is fixed.

Exercise 22: From Figure 3.4.1, it appears that w1 Cw2 D q should be one of the equations that partition

the 2-simplex. Explain why w1 C w2 D q is accounted for in the previous paragraph.

Case 1. (Dictator Regions R1, R2, and R3). A point .w1; w2; w3/ is in region Ri if and only if voter

i is a dictator, i.e., wi � q: All of the points in Ri are mapped to the Shapley-Shubik power index with

a 1 in position i and 0 elsewhere.

Case 2. (Regions R4, R5, and R6). A point .w1; w2; w3/ is in region RiC3 if and only if voter i is a

dummy voter and the other two voters have equal power. This occurs when wi C wj < q, wi C wk < q,
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and wj C wk � q where i , j , and k are distinct voters in f1; 2; 3g. All of the points in region RiC3 are

mapped to the Shapley-Shubik power index with a 0 in position i and 1
2
in the other two positions.

Case 3. (Regions R7, R8, and R9). A point .w1; w2; w3/ is in region RiC6 if and only if wi < q,

wi C wj � q, wi C wk � q, and wj C wk < q. All of the points in region RiC6 are mapped to the

Shapley-Shubik power index with a 2
3
in position i and 1

6
in the other two positions.

Case 4. (Region R10). A point .w1; w2; w3/ is in region R10 if all voters have equal power. This

can occur in different ways depending on the quota. For q � 2
3
, a point is in this region if wi � 1 � q

for all voters i . Equivalently, wj C wk � q for all voters j and k. For q > 2
3
, a point is in this region

if wi C wj < q for all voters i and j . Hence, a measure passes only if all three voters agree in the

affirmative. All of the points in region R10 are mapped to the Shapley-Shubik power index .1
3
; 1

3
; 1

3
/.

The above lengthy reasoning amounts to saying that any game lying in region Ri has the Shapley-

Shubik power index as listed in Table 3.4.1.

Region R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

SSPI 1W0W0 0W1W0 0W0W1 0W 1
2
W 1

2
1
2
W0W 1

2
1
2
W 1

2
W0 2

3
W 1

6
W 1

6
1
6
W 2

3
W 1

6
1
6
W 1

6
W 2

3
1
3
W 1

3
W 1

3

Table 3.4.1. Regions and their corresponding Shapley-Shubik power indices.

Figure 3.4.4.

Exercise 23: Normalize the simple weighted-voting game Œ21I 7; 12; 13�. Which region contains the

normalized game? Determine the Shapley-Shubik power index of the game.

Exercise 24: Normalize the simple weighted-voting game Œ3I 2; 1; 1�. Which region contains the normal-

ized game? Determine the Shapley-Shubik power index of the game.

Exercise 25: For q D 3
4
, find the Shapley-Shubik power index of the game corresponding to the point

given in Figure 3.4.5.

Example 6: The normalized game from Example 3 is Œ14
20

I w1

20
; w2

20
; w3

20
�. As in Example 3, consider the

possible values of w1, w2, and w3 so that the simple weighted-voting game has a Shapley-Shubik power

index of 2
3

W 1
6

W 1
6
. There are a finite number of games with w D 20 (before normalization). Normalized,

these games form a set of lattice points on the 2-simplex. The games that have the same Shapley-Shubik

power index will lie in the same partition of the simplex.

The Shapley-Shubik power index of 2
3
W 1
6

W 1
6
corresponds to region R7 in Figure 3.4.4. Thus, Example

6 can be viewed as counting the lattice points that lie within region R7. All 231 integer solutions to
w1

20
C w2

20
C w3

20
D 1 are evenly spaced out in the simplex and are pictured in Figure 3.4.6. The 21 lattice
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Figure 3.4.5.

points in region R7 are darkened in Figure 3.4.6; this agrees with the 21 lattice points from the solution

to Example 6.

In Example 6, if w is increased, then the total number of discrete games increases since the number

of solutions to w1 C w2 C w3 D w increases. Indeed, there are
�
wC2

2

�
D .wC2/.wC1/

2
nonnegative integer

solutions to w1 C w2 C w3 D w: Consequently, the number of lattice points on the 2-simplex increases.

As w increases without bound, the lattice points fill up the simplex. In particular, the lattice points that

have the Shapley-Shubik power index of 2
3

W 1
6

W 1
6
fill up region R7. Although the number of games in

region R7 increases without bound as w ! 1, the ratio of games in region R7 to the total number of

games approaches the ratio of the area of region R7 to the area of the 2-simplex.

Figure 3.4.6.

Assume that there exists a uniform distribution over the n-simplex. So every point is equally likely to

be selected as the weights of a simple weighted-voting game. For a fixed quota q, the likelihood that a

particular Shapley-Shubik power index occurs is merely the volume of the region that it maps to divided

by the volume of the simplex. Although it is difficult to picture the higher dimensional simplices, even

for n D 4, it is still possible to determine the likelihood of certain outcomes. For n D 3, it is quite easy

to compute the probability of a simple weighted-voting game having a particular Shapley-Shubik power

index. These probabilities are computed as functions of the quota in Table 3.4.2. We consider this limit

process explicitly in the next example.
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Region R1, R2, R3 R4, R5, R6 R7, R8, R9 R10

Probability (q < 2
3
) .1 � q/2 .2q � 1/2 �8q2 C 10q � 3 .2 � 3q/2

Probability (q D 2
3
) 1

9
1
9

1
9

0

Probability (q > 2
3
) .1 � q/2 �5q2 C 8q � 3 .1 � q/2 .3q � 2/2

Table 3.4.2. Probabilities of regions for all values of the quota.

Exercise 26: Assume the normalized quota is q < 2
3
. Use basic geometry to verify the probability that

a simple weighted-voting game selected at random from a uniform distribution over the 2-simplex has

0 W 1
2

W 1
2
as its Shapley-Shubik power index is .2q � 1/2: (Hint: Remember to divide the area of R4 by

the area of the 2-simplex.)

Exercise 27: For each of q < 2
3
, q D 2

3
, and q > 2

3
, verify that the sum of the probabilities that each

region occurs is 1.

Example 7: Assume that the normalized quota q is greater than 2
3
and that w is an integer. As w

approaches infinity, we can determine the likelihood that a simple weighted-voting game
�
qI w1

w
; w2

w
; w3

w

�

selected at random has Shapley-Shubik power index 2
3

W 1
6

W 1
6
. As w increases, we expect that this

likelihood will converge to .1 � q/2, the value from Table 3.4.2 for region R7.

The inequalities that define region R7 (from Case 3) are

w1

w
< q;

w1 C w2

w
� q; and

w1 C w3

w
� q:

Using a little algebra, these inequalities can be rewritten as

w1 < qw; w3 � .1 � q/w; and w2 � .1 � q/w:

Because w3 � .1 � q/w and w2 � .1 � q/w, it follows that w2 C w3 � 2.1 � q/w or w1 C w2 C w3 �
2.1 � q/w C w1: This simplifies to .2q � 1/w � w1: This bounds w1 from below. The number of simple

weighted-voting games in region R7 for fixed w is the number of nonnegative integer solutions of

w1 C w2 C w3 D w subject to

.2q � 1/w � w1 < qw

w2 � .1 � q/w

w3 � .1 � q/w:

For different values of w, the products qw and .1 � q/w may or may not be integers. Since we are

concerned with the limit process, we will assume that qw and .1 � q/w are always integer values. This

assumption does not change the calculation. Indeed, one could look at the case where these values are

integers or are not integers. In both cases, the limits converge to the same value.

As in Example 4, we can use the Inclusion-Exclusion Principle to count the number of nonnegative

integer solutions to the above equality with inequality constraints. However, it is simpler to transform the
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system above by a change of variables, as would be done in the Inclusion-Exclusion Principle, but then

consider the transformed system geometrically. Let w�

1 D w1 � .2q � 1/w; w�

2 D w2, and w�

3 D w3: The

above system becomes

w�

1 C w�

2 C w�

3 D 2.1 � q/w s.t. w�

1 < .1 � q/w and w�

i � .1 � q/w for i D 2; 3:

Hence, the number of nonnegative integer solutions to this new system is equal to the number of solutions

to the original system.

Notice that all of the inequalities of the new system involve .1 � q/w, exactly half of 2.1 � q/w, the

sum of the variables. This allows us to easily visualize the solutions, as in Figure 3.4.7. The darkened

dots represent solutions; this region forms an equilateral triangle of lattice points with .1 � q/w points on

every side. So, the number of solutions is the sum of the first .1 � q/w positive integers. Hence, there are�
.1�q/wC1

2

�
solutions.

To determine the ratio of solutions to possible simple-weighted voting games, we merely divide�
.1�q/wC1

2

�
by the number of simple-weighted voting games with total weight w. There are

�
wC2

2

�
such

games. Hence, the limit of the number of games that have Shapley-Shubik power index of 2
3

W 1
6

W 1
6
is

lim
w!1

Œ.1 � q/w�Œ.1 � q/w C 1�

.w C 2/.w C 1/
D lim

w!1

.1 � q/2w2 C .1 � q/w

w2 C 3w C 2
D .1 � q/2:

This value agrees with the entry in Table 3.4.2 for region R7 when q > 2
3
.

Figure 3.4.7.

Exercise 28: Use Table 3.4.2 to determine the probability that a randomly selected, continuous simple

weighted-voting game with normalized quota q D 0:7 will have a Shapley-Shubik power index of 0 W 1
2

W 1
2
.

Exercise 29: For normalized quota q D 0:7, determine the number of discrete simple weighted-voting

games with a Shapley-Shubik power index of 0 W 1
2

W 1
2
and w D 20. Now determine the probability

that a randomly chosen discrete simple weighted-voting game with normalized quota 0:7 and w D 20

has a Shapley-Shubik power index of 0 W 1
2

W 1
2
. If w were increased to 100, how would you expect the

probability to change?

We have linked the discrete and continuous simple weighted-voting games through limits. We have also

come full circle. Our initial mathematics questions were motivated by the modeling of political interactions.
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We now have new tools to ask and answer questions about the likelihood of different outcomes. As an

example, the next proposition applies the information from Table 3.4.2 and considers it in context of the

modeling of political science. The corollary is a direct consequence of the proof of the proposition.

Proposition 1: The probability of voter i being a dictator in a 3-voter simple weighted-voting game
with normalized quota q is .1 � q/2.

Proof: Let i D 1. Voter 1 is a dictator if and only if w1 � q. The region on the simplex satisfyingw1 � q

is a triangle similar to the 2-simplex where the two triangles share the vertex .1; 0; 0/. The intersection of

the hyperplane w1 D q and the simplex is the line segment with endpoints .q; 1 � q; 0/ and .q; 0; 1 � q/.

The ratio of corresponding sides of the smaller simplex to the larger is
p

2.1 � q/ W
p

2 or .1 � q/. By

Euclid VI.19, the ratio of the areas of the smaller to the larger simplices is .1 � q/2. By symmetry, the

proposition is true for i D 1; 2; or 3.

Corollary: The probability of there being a dictator in a 3-voter simple weighted-voting game with
normalized quota q is 3.1 � q/2.

The proposition can be extended for any n using the relationship between the volume of similar n-

dimensional regions. Haines and Jones [8] contains the extension and applications of the techniques and

perspectives of this paper to power indices and apportionment methods.

3.4.6 Guidelines for Use

This article naturally begins at an introductory level and offers more challenging aspects as it evolves. As a

rule of thumb, earlier material has been used in multiple settings: a general education requirement course,

an undergraduate applied combinatorics and graph theory course, and a graduate course in combinatorics,

as well as in independent study courses. As the material becomes more difficult, it is accessible to fewer

students. The following descriptions offer our suggestions on how to use this material for different courses,

including the aforementioned, as well as in a course in mathematical modeling. These guidelines are based

on adaptations of this material in different level courses at Montclair State University from Spring 1999

to Spring 2002.

General Education Requirement Course

For a general education requirement course or mathematics for liberal arts course, the topics and treatment

introducing simple weighted-voting games and Shapley-Shubik power indices, as well as which power

indices are possible, are appropriate. We suggest beginning with specific stories about political processes

and asking how such processes might be modeled and who has the political power. After defining simple

weighted-voting games, the students should be able to handle the subtleties of the constraint condition on

the quota, as considered in Exercise 2. In such courses, the primary goal should be for the students to

understand the range of applications of mathematics. For this reason, it is important to focus on modeling

real and fictitious scenarios. Indeed, students should be asked to model different political institutions, such

as the US Congress, the European Union, etc. Students can easily understand aspects of modeling, such

as how changes in weights must be accompanied by a change in the quota, as in Exercise 3.

Students can become quite adept at translating the words and descriptions of a political process (specif-

ically, what constitutes a coalition that can pass a measure) into mathematical conditions and ultimately

simple weighted-voting games. One such problem is Exercise 4. Students should realize that there is more

than one way to model the same situation. This is a good opportunity to discuss the idea of two simple



158 3. Papers on Special Topics

weighted-voting games being equivalent, having the same sets of players being winning, losing, and block-

ing coalitions. Students also can provide the conditions for a measure to pass if they are given a simple

weighted-voting game, although we do not provide any exercises of this form. Such examples can be found

in Lampert [12] and COMAP [4]. The definitions of a dictator, veto power, and a dummy voter are easy

for students to understand. Translating these concepts into mathematics after defining the Shapley-Shubik

power index is a little more difficult for students, but definitely doable. For example, Exercises 8 and 9

can be approached by first considering the case where there are 3 voters. Students can usually get the

results for n D 3 alone or in a group, but may need some assistance to make the jump for general n.

More generally, students should be able to understand that a player whose vote has a larger weight will

be at least as powerful (as defined by the Shapley-Shubik Power Index) as a player whose vote has a

smaller weight. Of course, when introducing the Shapley-Shubik power index, there are nice opportunities

to discuss and motivate permutations and factorial notation.

Although the more rigorous definition of the Shapley-Shubik power index as a function is inappropriate

for most general education courses, some of the exercises and concepts in the third section are appropriate

if pitched at the right level. By having the students focus on the patterns of circles that can occur when

determining the pivotal voter for all permutations of voters (as demonstrated in Figure 3.4.1), students can

readily answer Exercises 12 and 13. After tallying the results from different examples where there are 3

voters, it is reasonable to focus on the possible indices that do not appear to represent the power of players

in a simple weighted-voting game. The required analysis is a little more subtle, but can be accomplished

by students in a mathematics for liberal arts course. For example, Exercise 15 should not be too difficult.

It may be useful to explain why 3:2:1 is not a valid Shapley-Shubik power index (Example 1).

Overview for Advanced Courses Including Modeling

For more advanced courses, the material that is covered in a general education course is still applicable;

it can be covered much more quickly and efficiently. If the advanced course is a course in mathematical

modeling, more time should be spent on modeling different situations. The guidelines for implementing

this material in an upper level applied combinatorics course are suitable for those interested in adapting this

material to a class in modeling. However, there are more opportunities to challenge the students by having

them read material from works in mathematical political science that model different political institutions

and then discuss how the mathematics indicates who has power in a political institution. The end of the

introduction cites appropriate material for modeling students to read, with some assistance.

Undergraduate Applied Combinatorics

For an undergraduate applied combinatorics course, simple weighted-voting games and the Shapley-Shubik

power index provide a thread that can weave through the course as new topics are introduced. In fact,

the desire to consider different aspects of simple weighted-voting games and power indices can be used

to motivate different topics. There is some flexibility about the order of presentation of the topics. The

presentation in this article introduces permutations, equivalence relations, and the Inclusion-Exclusion

Principle to determine the number of nonnegative integer solutions to equalities with inequality constraints.

The geometrical perspectives of viewing nonnegative integer solutions of equalities as points on a simplex

and connecting probabilities to the area of regions in the simplex are not standard topics in a combinatorics

course, but they do add insight to the analysis of the equivalence classes and the Inclusion-Exclusion

Principle. See Table 3.4.3 for a list of combinatorics content and the relevant material in simple weighted-

voting games and the Shapley-Shubik power index. We offer time estimates that assume that other topics

will also be covered in the class. Our estimates describe how many days the content was taught as part of

the lesson; we assume that class periods are 75 minutes in duration.
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An appropriate place to introduce simple weighted-voting games and the Shapley-Shubik power index is

when combinations and permutations are covered, hopefully early in the course. Combinations are naturally

considered when evaluating winning coalitions. At this point, the structure of voters necessary to pass a

measure can be used to discuss equivalence classes informally, since different values for quota and weights

can yield the same structure. Although not considered in this article, at this point it is possible and natural

to introduce the Banzhaf power index that is based on combinations, as opposed to permutations, of voters

(e.g., see [4]). By keeping track of the Shapley-Shubik power indices that are associated with different
games, one can lead students to question which power indices are possible. Then, using properties of the

addition of real numbers and permutations, it is possible to prove that 5:1:0 is not a valid Shapley-Shubik

power index and ask the class to prove or disprove that 3:2:1 is a valid Shapley-Shubik power index.

Parts of two class periods can be used to introduce simple weighted-voting games and the Shapley-Shubik

power index. More time should be spent if the focus of the course is modeling.

Students always seem to have difficulties defining functions and relations, especially in discrete settings.

For example, students often exclaim "vertical line test" when trying to determine whether a relation is a

function in a discrete setting. Viewing the Shapley-Shubik power index as a function with appropriately

defined domain and range demonstrates how mathematical structure can help formalize questions that arise

in the application. From examples, students will realize that the Shapley-Shubik power index function is,

for the appropriate parameter values, many-to-one. This observation can be translated into questions about

the number of points in the domain that have the same image. Of course, this leads back to equivalence

classes in the language of functions.

Although the Shapley-Shubik power index can be used to introduce the idea of an equivalence relation,

there is no reason to cover this material immediately. Before introducing partial orderings and equivalence

relations, it is useful to teach the use of algorithms to generate combinations and permutations, as well as

inversion sequences. It also helps to define simple weighted-voting games to be ss-equivalent, as is done in
this article. Then, the students can help the instructor prove that ss-equivalent games form an equivalence
class. It may be worth considering all possible distributions of weights of voters that sum to a fixed sum

and yield the same Shapley-Shubik power index. This will lead to partitioning the nonnegative integer

solutions to the simplex equation with the inequality constraints. Alternatively, it can be equally productive

to explicitly demonstrate the link between computing the power index and the equation with the inequality

constraints. Changing the order of presentation would then lead into the ss-equivalent definition.
Generalizing the equality with inequality constraints for more than three voters can be discussed,

covered in detail, or even omitted, depending on the time set aside for this application and the familiarity

or comfort of the professor with the topics. However, it is natural to consider what consequences follow

for simple weighted-voting games with more than three voters. The extension to more than three voters

does raise interesting complexity-type questions about the number of inequality constraints necessary to

form an equivalence class. While the definitions, theorem, etc. hold for simple weighted-voting games with

any number of players, things like computing examples and determining what points in the domain of the

Shapley-Shubik power index are actual images can be tedious.

There are many variations on the theme of determining the number of simple weighted-voting games

that are in the same equivalence class (and have the same Shapley-Shubik power index). However, in all

such cases, it is necessary to emphasize setting up the system of inequality constraints and to indicate

how manipulating the constraints assists in finding the minimal constraints. As is demonstrated in this

article, some of the constraints may end up being redundant (as in Example 4). Once the inequality

constraints are determined, the problem becomes solvable by counting methods. Example 4 demonstrates

how changes of variable simplify the calculations. Many of these problems will require the use of the

Inclusion-Exclusion Principle. We suggest that the Inclusion-Exclusion Principle as well as determining

the number of nonnegative integer solutions to an equality with inequality constraints be introduced before
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Pertinent Topic Relevant Voting Theory Content

Winning and losing coalitions for simple weighted-voting games

Combinations Number of coalitions of fixed size

Banzhaf power index

Shapley-Shubik power index

Permutations Number of possible power indices

Introduction to simplices

Shapley-Shubik power index as a function

Discrete functions Many-to-one, injective, and surjective functions

Informal introduction to partitions

Formal partitions

Equivalence Classes Definition of ss-equivalent games

Geometric partition of the simplex

Equations with inequality constraint view of ss-equivalence

Nonnegative integer solutions Counting the number of solutions

Geometry of the solutions

Inclusion-Exclusion Principle Counting the number of nonnegative integer solutions

Solutions to equalities with inequality constraints

Large n Areas of regions defining a partition of the simplex

Probabilities of different Shapley-Shubik power index outcomes

Table 3.4.3. Topics in an undergraduate combinatorics course and their relationship to simple weighted-voting games and

the Shapley-Shubik power index.

determining the number of simple weighted-voting games in an ss-equivalence class. One class period can

be used to introduce and to apply the Inclusion-Exclusion Principle to count the number of discrete games

in an equivalence class.

Although the counting problems can be taught without introducing the geometric perspective, it is most

helpful to make the geometry the focus of instruction. The inequality constraints that determine if a simple

weighted-voting game is in a particular equivalence class have obvious geometrical implications even

though it may not be all that obvious when mixing in the geometrical perspective in the discrete problem

of counting the number of solutions to an equation with inequality constraints. In fact, the geometry can

be introduced before using it to visualize simple weighted-voting games. In two proofs without words

(Haines and Jones [7],[9]), we relate the number of nonnegative integer solutions to x C y C z D n

with inequality constraints to triangular numbers. The purely visual approach in [7] mimics the Inclusion-

Exclusion Principle, while our approach in [9] is not as direct. By viewing inequality constraints as

separating the plane into half-planes, students explicitly see what solutions are being counted and eliminated

in the inclusion-exclusion process. They then can make the connections from combinatorics to Euclidean

space. This is a good lead in that helps students understand how the inequality constraints partition the

simplex into different regions. Indeed, for three voters, the four possible Shapley-Shubik power indices

and their permutations should be seen to exhaust the simplex. Exercises 23, 24, and 25 can be used to

reinforce the concepts. We suggest using at least two class periods to introduce the geometry of simplices

and the discretized simplex (where points are viewed as nonnegative integer solutions) and to apply the

Inclusion-Exclusion Principle to physically partition the simplex into the equivalence classes.

Determining the likelihood that a randomly selected simple weighted-voting game with a fixed total

weight has a particular Shapley-Shubik power index is a minor extension of the previous ideas. However,



3.4 Integrating Combinatorics, Geometry, and Probability through the Shapley-Shubik Power Index 161

it is a little more challenging to show that this likelihood approaches the ratio of the area of the partition

region to the area of the simplex, as was demonstrated in Example 6. Our solution to Example 6 simplifies

the calculation by reconfiguring the problem geometrically. A more direct Inclusion-Exclusion Principle

proof is also possible and may be more assessable and understandable for undergraduates. Students should

have the intuition that as the total weight increases, then the number of dots in the simplex increases and

fills up the region.

For a modeling course, probabilistic questions can be related to a player being a dictator, as in Proposi-

tion 4 and Corollary 5. These can easily be extended for any number of voters, e.g., see [8]. This provides
a good opportunity to discuss why a continuous approach is helpful when analyzing a discrete problem.

As the counting becomes more complicated, the area can still be determined by geometry or integration.

Hence, as long as the total weight is large enough, we expect the outcome of the Inclusion-Exclusion

Principle (to determine the number of simple weighted-voting games in an equivalence class) to be propor-

tional to the partition area on the simplex. Computing the probability using area may not be in the spirit

of a combinatorics course, but it does show how to apply a variety of mathematical techniques to attack

the same problem. And we believe that students need to see that there is more than one way to answer a

question. Before unleashing your students on a problem to show the relationship between area and the total

weight approaching infinity, it would be beneficial to explicitly solve a limit problem in class. Connecting

areas and limits could take a good portion of two class periods.

We have assigned problems comparable to Example 6 as the kernel for a presentation by a masters level

student, as part of a graduate combinatorial mathematics course. Another student presented geometrical

approaches to 4-player simple weighted-voting games, where he viewed layers of the tetrahedron/3-simplex

as triangles/2-simplices. He related his results for specific Shapley-Shubik power indices to triangular

numbers as in [9], but could have used tetrahedral numbers, too. These students were comfortable thinking

geometrically because visualization was emphasized throughout the course.

Just as writing and verbally expressing ideas are not introduced in a course at the expense of mathe-

matical content, we believe that these examples/topics in voting theory can be integrated into the content

without reducing the number of topics. In fact, just as communication enhances the understanding of math-

ematical content, we believe the recurrent use of simple weighted-voting games and the Shapley-Shubik

power index also enhances the understanding.

3.4.7 Conclusion

As educators, we would like our students to be able to see how the material of a course can be applied to

seemingly unrelated problems and that the tools developed in a mathematics course and the courses before

it can be applied in many situations, not just those examples presented in textbooks. Sometimes texts

revisit a particular application, but only using the mathematics from the one course. This paper presents

a problem in voting theory that can be revisited throughout an undergraduate combinatorics class tying

together ideas from combinatorics, geometry, calculus, and probability. Such a multi-perspective analysis

leads to a deeper understanding of the mathematical thinking involved.
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3.5.1 Introduction

Post-calculus classical applied math is scattered through courses in differential equations, boundary value

problems, vector calculus, matrix algebra, complex variables, and numerical methods. Most of this material

can be found in texts entitled Advanced Engineering Mathematics. The mathematics in such texts is truly
classical, having been available in its present format for many years, if not centuries. The apprenticeship

for working in the field of classical applied mathematics is long and arduous because the apprentice must

master material from so many different disciplines.

Twenty-first century software allows this apprenticeship to be both shorter and more effective. Modern

computer algebra systems can be the tool of first-recourse for teaching, learning, and doing such applicable

mathematics. Software tools such as Maple, Mathematica, MuPAD, and Macsyma implement nearly all

the manipulations of the undergraduate program in applied and engineering mathematics. The time has

come to use these twenty-first century tools for teaching eighteenth and nineteenth century mathematics.

A complete post-calculus applied math curriculum in which a computer algebra system is the primary

working tool appears in [1]. In this text the software is not just an add-on to a traditional by-hands pedagogy.

Instead, the software is used as an active partner in the student's participation in applied mathematics.

We give two examples taken from [1], examples that show how use of a computer algebra system

enhances pedagogy. The purpose is not to tout a particular book, but instead, to call attention to the

concept that a computer algebra system can, and should, be the working tool for teaching, learning, and

doing classical applied math. So, rather than talk about this approach, we give two examples and let readers

judge for themselves the viability of a curriculum predicated on the ubiquitous use of modern software

tools.

3.5.2 Background Details

An ILI grant from NSF in 1988 brought computer algebra into the classroom at Rose-Hulman Institute

of Technology (RHIT). By 1991 all calculus and differential equations courses were being taught in

163
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classrooms equipped with one computer per student. In 1995 RHIT implemented a laptop program that put

a laptop computer into the hands of every new student. The introduction of computing hardware into the

classroom was largely driven by the need to put computer algebra software into the hands of the students

not only during class, but also during exams.

The students at RHIT are fairly homogeneous, since the school primarily provides undergraduate

engineering and science programs. The first math course is calculus, although in more recent years a

greater percentage of incoming students have had some high school exposure to calculus. At least two

sections of 25 students enter with enough calculus to move directly into differential equations. However,

as selective as RHIT is, its quarter system dictates a fairly lively pace, and students at every level find its

programs demanding.

All students entering RHIT must have, or acquire, three quarters of calculus, up through and including

multivariable calculus. However, vector calculus, including discussions of divergence and curl, and the

integral theorems of Green, Stokes, and Gauss, is not covered. Engineering and most science students are

required to take two quarters of differential equations, which, in recent years have included about half

a quarter of matrix algebra in place of an equivalent exposure to boundary value problems. Computer

science students are not required to take the second differential equations course, although many do as

they often pursue a double major in both computer science and math.

With the advent of the first computer lab in 1988, the calculus and differential equations courses were

revised to make use of computer algebra as a working tool. Almost immediately it was seen that formerly

difficult topics such as finding eigenpairs for solving linear systems of ODEs, computing Fourier series,

and solving boundary value problems became much easier for students. In 1992 the author was challenged

by a publisher to write an advanced engineering math book based on the newly available computer tools.

During the next five years as he debated undertaking this task, he developed courses in vector calculus,

complex variables, numerical analysis, boundary value problems, and the calculus of variations, all using

computer algebra as the primary working tool. As these courses were taught, the new approach of using

symbolic computation as an active partner in pedagogy was being worked out.

An essential part of this development was the availability of computers during class, for homework,

and during exams. Without this ubiquitous presence of the computer, the courses would have remained

essentially by-hands, with a bit of computation grafted on as additional work. Having the computer available

on exams meant that skills mastered in the computer environment would continue to be emphasized during

exams, as well as in assignments. Creating a new pedagogy required complete access to a new set of

working tools.

At the start of academic year 1997, a contract was signed for [1], and in the next two years a

manuscript was written to capture the experiences of teaching post-calculus applied math course with a

computer algebra system. Thus, RHIT's two courses in differential equations, its boundary value course,

its linear algebra course, its two courses in numerical analysis, its course in vector calculus, and its

course in complex variables all were captured in the manuscript. The only topics not included from an

undergraduate engineering and science program are statistics, discrete signal processing, and the abstract

algebra that appears in courses in discrete and combinatorial mathematics.

The drift of these remarks is to convince the reader that the new pedagogy is all inclusive. Computer

algebra systems have evolved to the point where nearly all the mathematics an undergraduate must master

can be implemented in such a system. But merely capturing the computations is not the significant issue.

What we are convinced is really true is that learning mathematics with a computer algebra system is a

richer, more efficient, and more effective learning experience.

To convince the reader of this same proposition, we will present two examples. The first will show

how to use the convolution theorem for Laplace transforms to compute a convolution. Application of the

definition of a convolution product can lead to delicate integrations that are rife with nested conditionals.
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The convolution theorem allows the integration to be by-passed so that the convolution can be quickly

evaluated. However, there are other tools available for analyzing the nested conditionals faced when eval-

uating the integrals generated by the definition of the convolution. We believe this interplay of approaches

makes the convolution easier to comprehend.

The second example will show how to uncouple a first-order, constant-coefficient system of ordinary

differential equations. The process of uncoupling the equations leads naturally to the diagonalization

algorithm for the system matrix. This kind of investigative development is just too tedious to implement

by hand, and is not experienced by the majority of students seeing the material for the first, and perhaps,

only time. We believe this example shows how much richer the learning experience can be when illuminated

with the right set of tools.

Before presenting these examples of how a computer algebra system changes pedagogy, we provide the

following anecdotal evidence of improved learning under its aegis. When the prevailing technology was

pencil and paper, Fourier series were not well received in the author's DE classes. Students would write

some integral signs, generally not evaluate the integrals correctly, and conclude with a summation whose

meaning was nonexistent. The topic was just a miasma of meaningless symbol-pushing. With the advent

of the new technology students were able to evaluate integrals correctly, and could even graph partial

sums of the resulting Fourier series to see if they converged to anything resembling the original function.

The author's biggest surprise came when students brought assignments to his attention, asking why their

partial sums did not seem to be converging to the appropriate function. When they made a computational

error, they were in a position to realize it, and to seek the source of the error. It was on the basis of such

experiences that the author maintained his enthusiasm for revising courses and pioneering a new pedagogy.

Student reaction convinced the author that a more conceptual learning was taking place as a result of the

use of modern computer technology in the classroom.

3.5.3 Example 1

As part of their mathematics requirements, students of engineering and applied mathematics typically meet

the Laplace transform in a differential equations course. The course will generally include the convolution

integrals and theorem. These students meet convolutions again in their engineering courses, either in

electrical engineering or in control theory courses, where an intuitive approach is taken. The following

example shows how theory, practice, and intuition can be developed simultaneously by the use of the

appropriate software tools.

For the Laplace transform, convolution is defined by either of the integrals in

.f � g/.t/ D
Z t

0

f .t � x/g.x/dx D
Z t

0

f .x/g.t � x/dx:

For the functions

f .t/ D e�tH.t/ and g.t/ D 2 sin.t � 1/

where H.t/, the Heaviside function, is 0 or 1 accordingly as t is negative or positive, the first integral

becomes

Z t

0

2e�.t�x/H.t � x/ sin.x � 1/dx D e�t .cos 1 C sin 1/ C sin.t � 1/ � cos.t � 1/:

For an intuitive approach to understanding the convolution, engineers graph f .x/, f .�x/, and f .t�x/,

obtaining Figures 3.5.1, 3.5.2, and 3.5.3, respectively. Figure 3.5.2 shows the reflection of f .x/ across the

vertical axis, and Figure 3.5.3 shows f .1 � x/; the translation of the reflected graph seen in Figure 3.5.2.
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Figure 3.5.4 shows a graph of the factors f .2:5 � x/ and g.x/; the first as the thick curve, the second as

the thin. The product of these factors gives the integrand for the convolution at t D 2:5; graphed in Figure

3.5.5. The definite integral of this function on the interval Œ0; 2:5� gives the value of the convolution at

t D 2:5; a value obtained numerically as 1.04018444. If this process is repeated so as to form a succession

of points, and the points plotted, we get Figure 3.5.6, a graph of the convolution.

Figure 3.5.1. Graph of f .t/ D e�tH.t/

Figure 3.5.2. Graph of f .�x/ for the function f shown in Figure 3.5.1

Figure 3.5.3. Graph of f .1 � x/ for the function f shown in Figure 3.5.1

Figure 3.5.4. Graphs of g.x/ D sin.x � 1/ (thin line), and of f .2:5 � x/ (thick line) for f shown in Figure 3.5.1

As insightful as this process might be, it does not tell a student how to obtain a convolution. Instead,

we suggest use of the convolution theorem for Laplace transforms whereby the Laplace transform of the

convolution is the product of the transforms of the factors. Alternatively, we write

L�1 ŒF .s/G.s/� D f � g
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Figure 3.5.5. Graph of the product f .2:5�x/�g.x/, where f and g are shown in Figures 3.5.1 and 3.5.4, respectively.

Figure 3.5.6. Graph of the convolution .f � g/.t/, where f and g are shown in Figures 3.5.1 and 3.5.4, respectively.

Figure 3.5.7. Graphs of the functions f .t/ D H.t � 1/ � H.t � 2/ and g.t/ D H.t � 3/ �H.t � 4/.

and compute

F.s/G.s/ D
�

1

s C 1

� �
2
cos 1 � s sin1

s2 C 1

�
D

�
2
cos 1 � s sin 1

.s C 1/.s2 C 1/

�

f � g D L�1 ŒF .s/G.s/� D e�t.cos 1 C sin1/ C sin.t � 1/ � cos.t � 1/

With a computer algebra system, there is about as much work evaluating the convolution integral for

these two functions as there is in using the convolution theorem. However, this is not always the case, as

we see with the functions

f .t/ D H.t � 1/ � H.t � 2/ and g.t/ D H.t � 3/ � H.t � 4/

whose graphs are seen in Figure 3.5.7. (The leftmost line segment is the nonvanishing portion of the graph

of f .t/; the rightmost, g.t/.)

Evaluation of the Convolution by the Convolution Theorem

To compute the convolution .f � g/.t/ by Laplace transforms and the convolution theorem, obtain

L Œf .t/� D e�s�e�2s

s
and L Œg.t/� D e�3s �e�4s

s
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then invert the product of these transforms to obtain

L Œf .t/� L Œg.t/� D e�4s � 2e�5s C e�6s

s2

so that

.f � g/.t/ D .t � 4/H.t � 4/ � 2.t � 5/H.t � 5/ C .t � 6/H.t � 6/:

If we make the Heaviside function left-continuous by defining H.0/ D 0, then the convolution can be

written as

.f � g/.t/ D

8
ˆ̂̂
<
ˆ̂̂
:

0 t � 4

t � 4 4 < t � 5

6 � t 5 < t � 6

0 t > 6

and its graph can be seen in Figure 3.5.8.

Figure 3.5.8. Graph of the convolution .f � g/.t/ for the functions shown in Figure 3.5.7.

Evaluation of the Convolution by the Convolution Integral

Evaluating the convolution integral

.f � g/.t/ D
Z t

0

ŒH.x � 1/ � H.x � 2/� ŒH.t � x � 3/ � H.t � x � 4/� dx

requires knowing where in the xt -plane both f .x/ and g.t � x/ are simultaneously nonzero. Hence, the

inequalities x > 1, x < 2, t � x > 3, and t � x < 4 must all be satisfied. The feasible region is shaded

in Figure 3.5.9. The support of the integrand is the shaded parallelogram whose bounding edges are the

lines x D 1; x D 2; x D t � 3, and x D t � 4, and whose vertices are the points .1; 4/, .2; 5/, .2; 6/, and

.1; 5/. The shaded parallelogram is the region where the integrand has the value 1. Outside this region,

the integrand has the value 0.

Figure 3.5.10 is an embellishment of Figure 3.5.9. Horizontal lines represent typical paths of integration

along lines t D constant. Any such line for which t < 4 or t > 6 yields a zero integrand and a value of

zero for the convolution. Any such line between t D 4 and t D 5 yields an integrand of 1 and a value for

the convolution that will be determined by the integral

Z t�3

1

1dx D t � 4:

Any such line between t D 5 and t D 6 also yields an integrand of 1 and a value for the convolution that

will be determined by the integral Z 2

t�4

1dx D 6 � t:
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Figure 3.5.9. The region over which the integrand of the convolution integral is not zero for the functions in Figure 3.5.7.

Figure 3.5.10. The region in Figure 3.5.9, along with representative horizontal lines of constant t .

The complete convolution can then be expressed as the piecewise function

.f � g/.t/ D

8
ˆ̂̂
<
ˆ̂̂
:

0 t � 4

t � 4 4 < t � 5

6 � t 5 < t � 6

0 t > 6

in agreement with the results from the convolution theorem.

3.5.4 Example 2

Curricula for undergraduate science and engineering often contain units on both matrix algebra and systems

of first order linear differential equations. The natural bridge from one to the other is the eigen-analysis of

the coefficient matrix for the system. The following example shows how the gap between the theory and

computation of eigenpairs and the solution of systems of differential equations can be closed in a natural

and constructive way by the use of modern symbolic mathematics software.
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Coupled Systems

The pair of differential equations

x0.t/ D 18x.t/ � 2y.t/

y0.t/ D 12x.t/ C 7y.t/

are coupled since both x.t/ and y.t/ appear in each equation. We apply the same term to the equivalent

system x0 D Ax, where

A D
"

18 �2

12 7

#
and x D

"
x.t/

y.t/

#
: (3.5.1)

It is this coupling which makes it difficult to solve the system.

Uncoupled Systems

The pair of differential equations

u0.t/ D 10u.t/ and v0.t/ D 15v.t/

forms a system of the form u0 D Bu, where the diagonal matrix B and the vector u are respectively

B D
"

10 0

0 15

#
and u D

"
u.t/

v.t/

#
:

These equations are said to be uncoupled since u.t/ appears only in the first equation while v.t/ appears

only in the second. Uncoupled equations of this type are easily solved by separation of variables. Each of

u.t/ and v.t/ are just constants times exponentials; specifically, they are

u.t/ D c1e10t and v.t/ D c2e15t :

Uncoupling Coupled Equations

Since uncoupled systems are so simple to solve, we ask if there is a way of uncoupling coupled systems.

Consider the change of variables defined by

x.t/ D a u.t/ C b v.t/

y.t/ D c u.t/ C d v.t/

and expressed in matrix form by x D Pu, where the matrix P is

P D
"

a b

c d

#
:

Making this change of variables in the original coupled system x D Ax, we obtain

a u0.t/ C b v0.t/ D .18a � 2c/u.t/ C .18b � 2d/v.t/

c u0.t/ C d v0.t/ D .12a C 7c/u.t/ C .12b C 7d/v.t/

which, in matrix notation is just .Pu/0 D A.Pu/ or u0 D .P �1AP /u, where we isolated u0 by multiplying

through by P�1; the inverse of P .
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We want our change of variables to result in a system of the form u0 D Bu, where B is a diagonal

matrix. If A is the matrix on the left in (3.5.1), then we want

P �1AP D 1

ad � bc

"
18ad � 12ab � 2cd � 7bc 11bd � 12b2 � 2d2

12a2 � 11ac C 2c2 12ab � 18bc C 2cd C 7ad

#

to reduce to a diagonal matrix of the form

C D
"

˛ 0

0 ˇ

#

for some as-yet unknown values of ˛ and ˇ. Using an appropriate computer algebra system, the solutions

of the four equations in the six unknowns a; b; c; d contained in P �1AP D C , are found to be

a D c
4

b D 2
3
d c D c d D d ˛ D 10 ˇ D 15

a D 2
3
c b D d

4
c D c d D d ˛ D 15 ˇ D 10

There appear to be two possibilities, namely

C1 D
"

10 0

0 15

#
and P1 D

"
c
4

2
3
d

c d

#

C2 D
"

15 0

0 10

#
and P2 D

"
2
3
c d

4

c d

#

For the diagonal matrices C1 and C2, the only difference is the order of the diagonal elements. It is no

small surprise to find the numbers 10 and 15 along the diagonal! The corresponding solutions for the

matrix P are really the same, except for the order of the columns. If, in P1 we set c D 4 and d D 3, we

get, except for column order, the same matrix as if we set c D 3 and d D 4 in matrix P2.

The matrix P1 diagonalizes the coupled system, resulting in the diagonal matrix C1, while the matrix

P2 also diagonalizes the coupled system, resulting in the diagonal matrix C2. The eigenvalues of A are

10 and 15, whereas the corresponding eigenvectors are

"
1

4

#
and

"
2

3

#

The columns of P1 (or P2) are multiples of the eigenvectors of A, and the diagonal entries of C1 (or

C2) are the eigenvalues. Hence, knowledge of the eigenvalues and eigenvectors leads to an uncoupling, or

diagonalization, of the system of differential equations. Alternatively, uncoupling the coupled system leads

to the eigenpairs and the similarity transform by which the matrix A is diagonalized.

3.5.5 Conclusion

Using a computer algebra system, students can do more mathematics more efficiently. The premise of this

paper is that teaching, learning, and doing applied mathematics via a computer algebra system is also more

effective. The complete curriculum in undergraduate applied and engineering mathematics developed in [1]

shows how twenty-first century computer software can be used to teach, learn, and do applied mathematics

from the seventeenth through the twentieth centuries. The computer tools can (and are) used to examine

relationships, amplifying what can be done with just a pencil and paper.
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It is a mistake to graft modern software tools onto a traditional approach to calculus, differential equa-

tions, linear algebra, or any other of the courses that make up a program in classical applied mathematics.

To teach this long-standing body of mathematics in the traditional by-hands fashion, merely paying lip-

service to the new software tools, is an inadequate strategy. The new tools allow for a new apprenticeship

and a new pedagogy. We really need to revise our texts to account for the impact of technology in the

classroom. Ultimately, we want our texts to be as interactive and as engaging as a multimedia show. We

cannot do this if we remain in the world of pencil and paper. But we can if we embrace modern software

tools as the primary working tools for teaching, learning, and doing applied mathematics.
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